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Abstract: To effectively protect the marine environment, it is crucial to establish effective environ
mental monitoring platforms. Traditional marine environmental monitoring methods heavily rely
on morphological identification and field expertise, with the sampling process being disruptive
and potentially destructive to vulnerable marine environments. In light of emerging biomonitoring
needs and biodiversity declines, we reviewed the urgently needed, ongoing advances in developing
effective, noninvasive, and innovative monitoring methods and systems to examine the complex
marine environment for better strategic conservation and protection, using the coral ecosystem
as one of the representative forefront examples in marine protection. This review summarizes
current trends and efforts in transitioning into more standardizable and automatable utilizations of
environmental DNA metabarcoding-based monitoring strategies and high-resolution underwater
optical imaging monitoring systems as two of the promising pillars for the next generation of
noninvasive biomonitoring and associated applications. The assistance of artificial intelligence
for environmental DNA metabarcoding and high-resolution underwater optical imaging into an
empowered, all-rounded monitoring platform for enhanced monitoring capacity is discussed as a
highly potent direction for future research exploration. This review will be a cornerstone reference
for the future development of artificial intelligence-assisted, noninvasive, and innovative marine
environmental monitoring systems.

Keywords: biodiversity monitoring; machine learning; environmental DNA; metabarcoding;
underwater optical imaging-based monitoring

1. Introduction

Oceans cover approximately 71% of the Earth’s surface area. As one of the major
repositories of the Earth’s biodiversity, oceans have significant ecological, economic, and
social value for humankind [1]. Each species in the marine food web and the diverse
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marine communities play a crucial role in maintaining the balance and health of the marine
ecosystem, providing important ecological services to the Earth, such as oxygen production,
carbon conservation, and nutrient cycling [2]. Therefore, marine biodiversity is critical to
maintaining global biodiversity and environmental health. However, the oceans are facing
enormous threats and challenges from climate change and overexploitation, making marine
environmental conservation an urgent worldwide concern [3,4]. To address biodiversity
decline and to protect and restore marine ecosystems and biodiversity [5], the United
Nations has implemented the Strategic Plan for Biodiversity 2011–2020 [6] and followed
with the next Decade of Marine Science for Sustainable Development (2021–2030). Real-
time, accurate, comprehensive, and large-scale monitoring of the oceans’ physicochemical,
biodiversity, and health status is fundamental and a critical foundation for the enhanced
protection and management of the marine environment [7].

Traditional biomonitoring methods such as electrofishing, netting, trapping, bottom
trawling, etc., have been serving as crucial and useful tools for understanding species com-
position and abundance in the marine environment. However, these traditional biomonitor-
ing methods are mostly capture-oriented in their means of obtaining samples for analysis,
which are invasive and potentially destructive when applied to reflect the status of the
environment [8]. Furthermore, morphological identification-based biomonitoring methods
can be limited in their ability to identify and quantify rare species at low densities and
differentiate morphologically similar or identical species (i.e., cryptic species) [8]. For
important but vulnerable marine environments, such as the coral reef ecosystems and other
marine protected areas, capture-based methods will cause significant damage and destabi-
lize the inhabiting community, which increases the environmental burden and offsets the
protection initiatives. Consequently, it is crucial to develop noninvasive marine monitoring
technologies for enhanced marine protection and management strategies.

In recent years, various environmentally friendly and high-resolution monitoring
platforms have emerged, such as optical (sensing) and acoustic methods, biosensors, and
molecular biology-based monitoring methods (metagenomics, environmental DNA (eDNA)
metabarcoding) [8,9]. Automated vehicles/equipment that reduce human labor in front-
end operations have also been incorporated into such monitoring platforms to improve
monitoring outcomes [10]. For example, the integration of high-resolution image capture
equipment on unmanned platforms has profoundly transformed the field of underwater
optical imaging-based monitoring to achieve high-resolution imaging with labor-saving
operations [11]. No matter how cryptic a species may be, it is bound to leave its DNA
in the environment; it is theoretically possible to detect these species by sampling and
extracting environmental DNA. Moreover, by using multiple primers to amplify target
DNA fragments after collecting eDNA from environmental samples, it is also possible to
simultaneously obtain compositional or structural information of multiple taxa, such as
the “tree of life metabarcoding” [12,13]. Hence, eDNA metabarcoding-based monitoring
has also emerged as a promising tool for enhanced marine monitoring because of its
noninvasive nature in sampling. Furthermore, integrating eDNA metabarcoding-based
monitoring with morphology-based optical monitoring can complement each other further
to empower the monitoring outcomes with enhanced monitoring efficiency.

Artificial intelligence (AI) systems leverage data and algorithms to enable capabilities
such as perception, learning, reasoning, and decision-making, allowing them to emulate
and surpass human performance in tackling complex problems and tasks [14]. Machine
learning, a fundamental branch of AI, aims to develop models and optimize algorithms
through training on large datasets. By learning and improving predictions autonomously
using neural networks and deep learning techniques, these optimized algorithms and
models can perform direct calculations on new input data to obtain predicted results [15].
In the ecological domain, AI has been used to estimate ecosystem status [16,17] and pre-
dict ecosystem responses to management changes [18]. The growing availability of large
datasets from optical imaging platforms and environmental DNA (eDNA) metabarcoding
has further highlighted the crucial role of AI in assisting with the processing and analysis
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of these rich data sources. For instance, integrating imaging and sequencing data with
AI-powered techniques, such as using machine learning to cross-validate eDNA-based tax-
onomic classification and identification against extensive image libraries, can significantly
improve the efficiency and reliability of these advanced biomonitoring platforms [19].

In this review, a literature search for marine environment monitoring methods was
conducted on the Web of Science (https://www.webofscience.com) using the keywords
“Environmental DNA metabarcoding” and “environment monitoring” as the search topic
on 27 August 2024. A total of 187 publications from 2012 to 2024 were summarized. Con-
sidering the corresponding literature, this review focused on high-resolution underwater
optical imaging-based monitoring technology and eDNA metabarcoding and (1) their
advantages in being noninvasive and applicability for noninvasive marine monitoring;
(2) their key components or methodologies in current applications as well as their current
limitations; (3) how AI can assist these two monitoring methods respectively; (4) their
application in marine environment monitoring and protection with AI technology or novel
concepts for biodiversity conservation such as citizen sciences; and finally the advantages
of combining the usage of the two monitoring methods and their application in marine
environmental monitoring were discussed.

2. High-Resolution Underwater Optical Imaging-Based Monitoring Technology as a
Powerful Monitoring Tool for Marine Ecosystem

High-resolution underwater optical imaging-based monitoring technology utilizes
advanced optical instruments and techniques to capture detailed and high-quality images
or videos of underwater environments. This technology provides observational data that
are high resolution and noninvasive in nature and have been proven to have advantages in
capturing details that traditional methods tend to overlook. These methods are also much
less labor-intensive as they can be operated remotely; specialized devices are highly efficient,
capable of storing and effectively processing large amounts of data and transmitting
data in real time. This technology has been helpful in studying underwater ecosystems,
biodiversity, and various physical and biological processes with precision and accuracy [20].

2.1. High-Resolution Underwater Optical Imaging-Based Monitoring Platform for Marine
Environmental Monitoring

The key components of high-resolution underwater optical imaging-based moni-
toring include specialized underwater cameras, remote-operated vehicles (ROVs), and
autonomous underwater vehicles (AUVs) equipped with cameras, lights, illumination
systems, image and video processing systems, data transmission and storage systems. Un-
derwater cameras are designed with high-resolution sensors, lenses, and durable housings
to withstand the underwater environment and capture fine details. ROVs and AUVs, on
the other hand, can navigate underwater, collect data, and transmit them in real time for
analysis. The advantages of using underwater ROVs for monitoring are to reduce labor-
intensive work, human safety risks, and high costs associated with field investigations.
Underwater ROVs also enable the analysis of collected videos or images to extract the
spatial distribution characteristics, which is crucial for image signal analysis. Addition-
ally, the proposed deep learning-based scheme using underwater ROVs can accurately
reveal the biological diversity and distribution, making it a practical alternative to tradi-
tional inspection methods [21,22]. However, elevated pressure, poor visibility, streamflow
regime, brightness, turbidity, and the importance of structural tightness are some factors
that must be considered during the design and later in the implementation phase [23].
Underwater target detection via ROVs has been widely used for purposes such as fish cage
inspection [24].

To ensure high-resolution imaging, additional lighting systems are used to compensate
for the lack of natural light at depth. Advanced image and video processing techniques
can further enhance the quality of obtained images and video through techniques such
as removing visual noise and enabling accurate and relevant information to be extracted
from the captured data. Real-time data transmission from the underwater environment
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to the surface is achieved using underwater communication systems, while efficient stor-
age and management systems handle the large volumes of data generated. For example,
researchers have adopted the iterative sparse reconstruction theory to study orthogonal
frequency-division multiplexing communication and estimated the channel of the sys-
tem [25]. Then, a new FFT technology was introduced and implemented to reduce the
inter-carrier interference of time-varying underwater acoustic channels [26] and achieve
high-efficiency transmission.

Marine ecology research benefits from high-resolution imaging, enabling investiga-
tions into the behavior of marine organisms, species interactions, and ecosystem dynamics.
Biodiversity monitoring aims to study and document underwater species and habitats,
contributing valuable information for biodiversity conservation [27]. High-resolution
underwater optical imaging-based monitoring technology is vital in advancing our under-
standing of underwater ecosystems and their dynamics. It empowers scientists to gather
detailed data, visualize underwater environments, and make informed decisions for marine
resource conservation and sustainable management.

2.2. Artificial Intelligence (AI)-Based Data Processing Strategies to Overcome Limitations of
Captured Image or Video Data

Traditional methods require a significant amount of manual effort to examine features
and patterns in images that are relevant to ecological reality. Such manual approaches can-
not efficiently handle the ever-increasing volume of raw data generated by modern sensing
technologies and are not suitable for large-scale monitoring of complex ecosystems [28].
To address this challenge, ecological studies increasingly rely on advanced computational
methods to automate data processing and extract knowledge from ecological records [29].
Thus, obtaining image and video data and its processing technologies are essential in
vision-based underwater monitoring and biodiversity assessment.

With the introduction of machine learning and artificial intelligence techniques, the
identification task can be intuitively modeled as a target detection and recognition task in
the field of image signal processing. The statistics of biological species and quantity can be
completed during image processing by providing a clear and high-quality image basis for
underwater organism identification and statistical work after it. For example, with the help
of target detection technology, AI-driven deep-sea creature sampling missions [30] and
underwater biodiversity data collection [31] are already possible. Advanced object detection
frameworks, such as You Only Look Once (YOLO), are also being applied to underwater
bio-detection [32], while applications such as fish size monitoring [33], penguins and their
prey detection [34], and marine animals tracking [35] also demonstrated the important role
of image processing techniques in vision-based underwater monitoring and biodiversity
assessment. However, due to the harsh, unexplored, and unpredictable nature of the marine
environment, impact due to waves, absence of light, and photos taken at close range, reliable
and long-term monitoring remains a challenge for smart underwater monitoring systems. The
use of computer vision and machine learning algorithms, which heavily rely on the reliability
and quality of image data, also imposes pressure on data processing considerations such as
correcting color distortion and handling image clarity in turbid water areas.

Camera performance limitations, such as resolution and color distortion, have con-
strained long-term monitoring of optical image diversity in the marine environment. In
other words, the outcome of monitoring tasks depends on the quality of the image. In
recent years, advancements in technology and equipment have significantly enhanced
optical imaging-based marine monitoring [36]. The design, optimization, transmission, en-
hancement, and renovation of the optical image system, along with intensity retrieval and
allotment, encompass a series of critical steps that are refined through image quality assess-
ment (IQA) and underwater-image-quality-measurement (UIQM) methods. Incomplete
and low-quality data in underwater images and videos are primarily due to insufficient
information. To address this deficiency, single-modal and multi-modal approaches are
commonly employed, as depicted in Figure 1.
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Figure 1. Flow chart summaring the components (blue boxes) and existing problems (orange boxes)
involved in high-resolution underwater optical imaging-based monitoring technology. The collected
high-resolution underwater data, images, and video data are generally incomplete, low quality,
high noise, and other problems. Through the use of deep learning methods, such as Convolutional
Neural Networks (CNN), Generative Adversarial Networks (GAN), and new network architectures,
construction, single-modal/multi-modal methods, purposes such as real-time tracking, creature
reidentification, and more can be achieved.

2.2.1. Single-Modal Methods

Single-modal strategies focus on mining deep into the information from the visual
modality itself, thereby focusing more attention on improving the quality of the raw data.
One of the most representative techniques is image enhancement, covering dehazing [37],
color restoration [38], and feature enhancement [37] under the empowerment of artificial
intelligence, which has been applied in underwater animal detection and classification at
cabled observatories [39]. Noise reduction methods also behave as image enhancement
strategies [40]. Super-resolution (SR) enhances high-resolution images from low-resolution
counterparts and has been increasingly exploited for perceptual image quality improve-
ment, but underwater images with SR are relatively under-explored as most existing
methods are unable to reduce the adverse effects of being underwater, and corresponding
techniques are yet to be developed [41]. Within these methods, techniques such as trans-
fer learning, multiscale, and residual learning are also introduced for better information
mining [42,43].

2.2.2. Multi-Modal Methods

Multi-modal strategies are the current trend for method development, making better
use of the multidimensional information carried by the sample and fusing its multi-view
and context knowledge. Most existing methods find both models from the visual perspec-
tive [44] or decompose existing images [45]. The image fusion of infrared and visible video
can guide the complementary advantages of different modal image information, which
significantly improve image quality and feature engineering efficiency, and extending the
idea to the underwater environment will be a very meaningful exploration [46]. In terms of
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noise reduction, multi-modal methods need to be able to process complex noise in different
models simultaneously instead of separating different views for separate processing in
traditional methods [47]. It is necessary to design novel end-to-end processing network
models to combat different frequencies of ocean noise through attention mechanisms,
adaptive algorithms, ADMM algorithms, etc. [48].

Regarding the architecture of deep methods, the framework derived from CNN and
its extended architecture are still the main ones [49,50]. Although GAN is helpful in sup-
plementing information, correcting color and contrast, and reconstructing occluded objects,
the generated fake samples limit the authenticity of underwater exploration tasks [51,52]. In
response to the multiple challenges of underwater tasks, researchers have focused on new
network architecture based on various technologies. A cascade of neural networks has been
designed for automated marking of underwater animals [53]. Meanwhile, FA+Net [54],
SFGNet [55], PA-UIENet [56], are advanced architectures emerging in recent years.

2.3. The Promising Use of AI in Underwater Optical Imaging-Based Monitoring Application

Relevant ecological information has been recorded through noninvasive and nonde-
structive underwater optical imaging-based methods as a meaningful new way to monitor
and evaluate biodiversity. At the same time, the trend of underwater optical imaging-based
monitoring applications is leading to multi-modal methods, which obtain and utilize multi-
dimensional information, even beyond pure visual modal analysis. The empowering role
of artificial intelligence has been given research attention to improve the overall intelligence
of models and processes, such as creature reidentification, real-time tracking, etc. [57].
Although it is desirable to select multiple models with as wide a gap as possible, such as
among text, visual, acoustic, and even eDNA signals, to complement multi-dimensional
information from a broader perspective, it is currently difficult to integrate multi-modal
heterogeneous feature information.

From the perspective of underwater animal detection and recognition application,
a multimodal-based, scene-aware, framework for aquatic animal segmentation has been
proposed [58]. However, there are many challenges and limitations in the generalization of
methods in the underwater environment. For example, the morphological characteristics
of underwater organisms can be significantly different, and the aforementioned limitations
of camera hardware conditions will also be obstacles. To sum up, developing multi-modal
underwater optical imaging-based monitoring and biodiversity assessment in complex
underwater environments requires introducing and combining more advanced technolo-
gies [59,60]. With the help of artificial intelligence, multi-modal methods have advantages
in the ability to examine the same sample from various perspectives, extract and fuse crucial
feature information from each modal, and leverage intermodal and intramodal knowledge
to enhance underwater object detection.

3. eDNA Metabarcoding as the Next-Generation Biomonitoring and Biodiversity
Conservation Tools: Its Noninvasive Nature and Advantages

eDNA metabarcoding-based monitoring methods involve collecting and extracting
DNA from environmental samples such as air, water, sediment, soil, etc., and then utiliz-
ing molecular techniques such as polymerase chain reaction (PCR) and high-throughput
sequencing (HTS) to obtain biological information from the environmental samples. eDNA-
based methods only require collecting environmental samples, which is advantageous in
being noninvasive and minimizes the destruction or invasion of the environment compared
to traditional capture-based methods. Environmental samples typically contain multiple
types and sources of DNA, such as those from captured microbes, living cell DNA released
into the environment through urine, feces, mucus, etc., and extracellular DNA released
due to cell fragmentation after the death of organisms [61]. These eDNA contain biological
information of their hosts, which when coupled with bioinformatics, can serve as evidence
for the presence of various species in the environment and further provide information on
the distribution and functional characteristics of a community without the need to directly
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observe or capture any organisms [61,62]. Furthermore, eDNA metabarcoding enables
simultaneous monitoring of diverse taxa by concurrently amplifying multiple specific DNA
fragments using single or multiple universal primers. Combined with HTS technology,
eDNA metabarcoding thus can detect a wide range of taxa rapidly and at lower costs than
traditional methods [63,64]. In addition, the use of eDNA metabarcoding also promotes the
transition of species identification from morphological recognition, which can be inherently
deceptive, to molecular biology, which can be more reliable and reproducible. The new
concepts and approaches for noninvasive biomonitoring [65,66], which eDNA provides
over visual and morphology-based monitoring, are appealing for detecting many marine
species that are naturally rare and cryptic, endangered, or at juvenile stages, which are
essential to be protected from invasive and destructive activities [67]. Given the charac-
teristics and advantages described above, eDNA metabarcoding has been widely used in
ecological environment monitoring and biodiversity conservation, with the potential to
further integrate with new concepts and technologies such as citizen science and machine
learning (ML).

4. Progress in Key eDNA Metabarcoding Methodologies

eDNA metabarcoding is conducted based on the assumption that all organisms leave
behind DNA and the DNA present in the environmental samples could realistically reflect
and represent the biodiversity in the environment [62]. The use of eDNA metabarcoding in
marine ecosystems is considered more challenging than in freshwater ecosystems, because
eDNA dilution and mixing are higher in the bulk water environment of the ocean due to
ocean currents, salinity, tides, and other abiotic factors that can affect the migration and
degradation of genetic materials [68,69]. In the methodology of eDNA metabarcoding, there
are various factors, in addition to the sampling environment, that could affect how informa-
tive the samples represent the biodiversity in the environment. Thus, ongoing efforts have
been dedicated to optimizing the sampling process, the efficiency of DNA collection and
extraction, the selection and design of PCR primers, and the completeness of the reference
database. For instance, the sampling process and sample size, according to the study’s
purpose, the study site’s environmental factors, and target species, must be thoroughly
considered before the experiment to optimize the result outcomes. Over the past decade,
eDNA metabarcoding-associated procedures have advanced significantly. For example,
methods for collecting environmental samples have evolved from manual sampling to a
wide variety of automated sampling to facilitate standardization. Therefore, this section
summarizes the progress made in sampling methods, reference databases, and primers
development, which are the key processes and foundations for eDNA metabarcoding-based
monitoring (Figure 2).

4.1. The Nondestructive Sampling in eDNA Metabarcoding-Based Monitoring

In the marine environment, eDNA metabarcoding is most frequently carried out by
collecting water and sediment samples [70], though new forms of sampling such as biofilm
sampling have emerged [71]. Water and sediment samples cover different environmental
compartments and behave differently in reflecting target types of organisms or commu-
nities [72–74]. For example, the DNA of aquatic insects, mollusks, and oligochaetes is
preferentially derived from sediments compared to amphibians, fish, mammals, etc. [75].
Tagliabue et al. [74] collected both sediment and benthic water samples to detect benthic
communities, and the structure of benthic communities reflected differed significantly
between samples, with more pelagic and nektonic species in the water samples. Thus, the
appropriate selection of water or sediment samples, or the simultaneous collection of both
samples, is critical for obtaining eDNA representative of scientific objectives.

For water sampling, surface seawater is often directly collected from sampling sites us-
ing simple tools such as buckets [76–78], wide-mouth containers [79], or Niskin bottles [80],
while larger volume samplers tend to be used for deep seawater sampling, such as Nansen
metal water sampler [81] or Niskin-style rosette sampler [82]. Similarly, depending on
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water depth and substrate type, different types of corers or grabs for sediment sampling
can be employed, such as Kajak corer, piston corer, gravity corer, or a Van Veen grab, which
are operated by hand or by line [83,84]. Though these samplers have been widely used to
collect water or sediment samples, they still need manual effort for operation and transport.
In recent years, various semi- or full-automatic and passive samplers that can be deployed
in marine environments have been used for sampling in eDNA metabarcoding, which
reduces labor and allows for the standardization potential of the sampling procedure.
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4.1.1. Active and Automatic Sampling

Currently, the major challenge of employing eDNA metabarcoding remains in the
standardization of sampling and processing methods. Several methods and guidelines
for eDNA monitoring in aquatic environments have been published by the United States
Geological Survey (USGS) [85], the Federal Office for the Environment (FOEN) of Switzer-
land [75], European Cooperation in Science & Technology (COST) [86] etc., providing a
reference for standardized operation for eDNA applications. However, applying these
guidance methods rigorously in practice is often not feasible. For example, the volume of
water required in sampling may conflict with the need for timely transportation of samples
back to the laboratory to reduce risks of DNA degradation [87]. Methods to preserve eDNA
in environmental samples, such as the addition of storage reagents to samples and field-
based filtration systems to reduce the need for laboratory-dependent work, are constantly
revised and explored for improved sampling effectiveness.

To improve sampling efficiency and reduce labor, a portable eDNA sampling system
(https://store.smith-root.com/products/edna-sampler-backpack-lith-combo, accessed
on 27 August 2024) was designed to integrate a pole for water collection and a portable
backpack that includes a pump with sensors that can be remotely controlled, as well as a
device for filtering and preserving water samples. This integrated eDNA sampler reduces
the need for human contact and the risk of DNA degradation, as water samples can be
sequentially filtered by the portable pump and preserved in the system. Meanwhile, its
programmable sampling rate and other parameters allow for standardizing sampling
methods. The flow and pressure experiment for this portable sampler carried out by
Thomas et al. [88] showed that these systems could capture enough DNA when applying
5 µm filters in specific parameter settings such as a flow rate threshold of 1.0 L/m.

Representative eDNA sampling coverage can be challenging in the field, especially in
relatively inaccessible environments. In recent years, ROVs or Unmanned Aerial Vehicle

https://store.smith-root.com/products/edna-sampler-backpack-lith-combo
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(UAV; drone) coupled with sampling containers and filtration instruments have been
used to collect water samples for eDNA studies. For example, 1 L water bottles attached
to the flying drones submerging into the surface water have been used to collect water
samples [89]. Further, a drone combining a filter capsule that can take one sample consisting
of 10 to 20 sub-samples of 50 or 100 mL water was developed (https://sylphium.com/
eng/edna-sampling-drone/, accessed on 27 August 2024). To minimize destruction while
collecting samples closest to corals, an underwater mini ROV and a seawater sampler
have also been applied to collect seawater 1–2 m above the coral reef top to survey the
scleractinia corals. This method proved to have sufficient detection efficiency to identify
targets at the genus level by collecting about 0.5 L water [90]. Nevertheless, complete and
accurate sampling requires practiced skills to maneuver a UAV or ROV proficiently, and
the effectiveness of these sampling methods still needs further verification.

Meanwhile, a series of fully automated eDNA samplers have been designed to sample
and preserve eDNA samples without researchers on-site. The environmental sampling
processor (ESP) generation 3 is one of the most advanced automated samplers that can be
coupled with an autonomous underwater vehicle (AUV) and contains 60 filter cartridges
that filter water samples under a set program which can be kept stable for 21 days [91].
The ESP sampler provides high-frequency and continuous sampling and, because of its
capability for unmanned operation, can travel to remote and inaccessible field sites, greatly
reducing the cost of time, labor, and other resources. A test of eDNA quantification
for ESP has confirmed its comparable capability and feasibility with manual sampling
methods [91]. ESP has also been employed on an uncrewed surface vessel (USV) surveyor
SD 1200 to collect water samples for regular intervals over a 4200-km, 29-day transit,
which would otherwise require enormous human and material resources using traditional
manual sampling methods [92]. However, it is undeniable that ESP samplers are expensive,
especially for small research groups, and are still in research and development phases
without widescale implementation potential yet. Thus, a range of automated eDNA
samplers were also recommended for a lower cost. A representative, open-sourced, single-
filter system, subsurface automated sampler for eDNA (SASe) with a relatively low cost
(~280 USD) was designed by the National Oceanic and Atmospheric Administration
(NOAA, USA), which is submersible to 55 m and can filter and preserve eDNA samples
in situ [93]. There are also relatively low-cost samplers with a multi-filter system for
eDNA collection, such as the Large Volume eDNA Samples [94], as well as a compact and
automated eDNA sampler that have both sample preservation and self-cleaning capabilities
designed by Hendricks et al. [95]. The development of these automated samplers can be
highly beneficial to reduce logistic challenges in eDNA monitoring.

4.1.2. Passive Sampling

In active sampling, water and sediment samples are commonly collected manually
or via automated samplers, paired with filtration systems to concentrate DNA. While
labor efficiency compared with conventional capture-based monitoring methods have
considerably improved, some of the limitations of active sampling, such as the need
for pump equipment, could be time-consuming or costly. Thus, passive sampling, a
low-cost and easily deployable alternative method, was developed using natural (e.g.,
sponge) or artificial materials. For example, two types of passive samplers, including
positively charged nylon and non-charged cellulose ester membranes fixed in a pearl
oyster aquaculture frame, were submerged in seawater ~1 m below the water surface
for 24 h, and presented a 97% detection rate of fish taxa compared with active eDNA
sampling [96]. Membranes submerged underwater for 24 h to collect eDNA also proved
able to detect comparable species richness with eDNA metabarcoding conducted by active
sampling [97]. Furthermore, the sorbent material used to capture eDNA is a key factor
in passive sampling. Chen et al. [98] reported that the best-performing material was
glass fiber filters after comparing the ability to capture the eDNA of the Chinese giant
salamander (Andrias davidianus) among 12 artificial materials. These studies demonstrated

https://sylphium.com/eng/edna-sampling-drone/
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the usefulness and potential of passive eDNA sampling. However, limitations remain, such
as the fixation of sorbent materials mentioned above in inaccessible water or remote deep
seawater and the potential of biofilm development and fouling process.

In summary, both widely accepted manual sampling methods and emerging auto-
mated samplers or passive sampling strategies have their advantages and limitations.
Choosing and optimizing appropriate eDNA sampling methods and maximizing and
rationalizing the sampling process according to experimental needs to avoid errors and
risk are crucial steps for high-efficiency monitoring.

4.2. The Reference Database for Marine Species and the Practical Standards for eDNA
Metabarcoding-Based Marine Monitoring

Following amplification of the target DNA fragments, the sequence information
obtained by sequencing needs to be aligned with known species genomic sequence in-
formation, i.e., reference databases. Moreover, the selection of appropriate marker genes
and the design of appropriate primers, as well as the subsequent taxonomic assignment of
sequenced marker genes, are all tightly bound to the coverage and quality of the reference
databases. Thus, the integrity and breadth of the reference sequence database are crucial
for exact species identification [99].

4.2.1. Globally Accessible Reference Databases

A collection of publicly available reference databases that can be used for eDNA
metabarcoding has been established and is constantly updated. For example, Barcode of
Life Database (BOLD) (https://www.boldsystems.org/, accessed on 27 August 2024) is a
web platform dedicated to collecting and organizing DNA barcodes of organisms world-
wide. Researchers and citizen scientists from worldwide can upload the DNA barcodes of
their collected biological samples to the BOLD database. Currently, BOLD provides a col-
lection of 15,976,000 barcodes for 352,000 species of fish, mammals, plants, fungi, and other
species (as of 10 March 2024) and is expected to expand its coverage to 1.5 million species
by 2025. In addition to databases specializing in collecting DNA barcodes, the GenBank
nucleotide database affiliated with NCBI is one of the most comprehensive and com-
monly used databases, containing sequences from more than 165,000 organisms. Fur-
ther, MitoFish is a specialized mitochondrial genome database with precise taxonomical
annotation of fish, including complete mtDNA sequences for 4605 fish species (as of
8 February 2024). For ribosomal DNA, the commonly used marker gene in addition to
mitochondrial DNA, SILVA (https://www.arb-silva.de/, accessed on 27 August 2024)
is one of the most commonly used databases alongside the Ribosomal Database Project
(https://www.glbrc.org/data-and-tools/glbrc-data-sets/ribosomal-database-project, ac-
cessed on 27 August 2024) providing bacterial, archaeal, fungal, and eukaryotic rRNA
sequences and corresponding analysis tools. More specific information on current reference
databases is summarized in Table 1.

4.2.2. Localized References Databases

Although many reference databases have been established and are widely used, cur-
rent reference databases are still insufficient considering the great diversity of species [100].
Such databases currently suffer from a huge redundancy of data volume, frequent compari-
son errors due to low upload thresholds, and an imbalance in both geospatial and species
coverage [101]. A recently realized need is for excessive data to be summarized into more
effectively accessible and processible information such as class-specific or pathogen-specific
databases. For example, Kasmi et al. [102] targeting mitochondrial genes in fish, have
extracted all 12S rRNA and COI fish sequences in databases such as NCBI, European
Nucleotide Archive (ENA), BOLD, etc. and revised corresponding taxonomic information
according to the Integrated Taxonomic Information System (ITIS) and FishBase, create the
Mare-MAGE database. Gold et al. [103] reported that regional databases using sequences
of local fishes provide higher alignment accuracy than comprehensive global databases

https://www.boldsystems.org/
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such as GenBank. Therefore, establishing regional, indigenous DNA databases and updat-
ing DNA barcodes globally are crucial for species monitoring and conservation. Several
regional databases have been established, such as the Canadian Centre for DNA Barcoding
(CCDB) and the European Molecular Biology Laboratory database (EMBL). Recently, the
Wuhan Institute of Aquatic Biology, Chinese Academy of Sciences, also constructed China’s
first comprehensive aquatic organisms eDNA database, AeDNA (http://159.226.163.221/,
accessed on 27 August 2024) (Table 1), by integrating DNA sequence, metadata, and tax-
onomic information from public databases, as well as DNA sequences of local aquatic
organisms, which lays a much-needed foundation to benefit future environmental monitor-
ing efforts. Concerning more localized regions worldwide, such as Hainan Island [104] and
Pearl River Estuary [105], the eDNA metabarcoding reference database of fish also has been
preliminarily constructed. These regional and localized databases can further broaden the
species coverage of public databases, and they are expected to increase the rate of species
identification from eDNA metabarcoding data.

Table 1. Summary of commonly used public genome reference database.

Database Main Content Source Website *

GenBank Nucleotide sequences for over
478,000 officially classified species

National Center for Biotechnology
Information (NCBI)

https://www.ncbi.nlm.nih.
gov/genbank/

European Molecular Biology
Laboratory database (EMBL)

Data resources and analysis tools to
support life science research 29 member states https://www.embl.org/

Barcode of Life
Database (BOLD)

An assembly of DNA barcode data
with primers, electropherograms,

images and sequences.; sub-database
for fish (FISH-BOL), mammals, bird

species, plant species, and more.

International Barcode of Life (iBOL)
Project; Canada

https:
//www.boldsystems.org/

Greengenes 2—16S
rRNA database

A reference tree that unifies the
genome and 16S rRNA databases in a

consistent, integrated resource by
inserting sequences into a

genome-wide phylogenetic tree

Lawrence Berkeley National
Laboratory, Berkeley, CA, USA

https:
//greengenes2.ucsd.edu/

SILVA rRNA database

Aligned small (16S/18S, SSU) and
large subunit (23S/28S, LSU)

ribosomal RNA (rRNA) sequences for
all three domains of life (Bacteria,

Archaea and Eukarya).

Free online resource from Leibniz
Institute DSMZ-German Collection of

Microorganisms and Cell Cultures
GmbH, Braunschweig, Germany.

https://www.arb-silva.de/

Ribosomal Database
Project (RDP)

Quality-controlled, aligned and
annotated Bacterial and Archaeal 16S

rRNA sequences, and Fungal 28S
rRNA sequences; A series of

analysis tools

United States http://rdp.cme.msu.edu/

PR2-metaPR2
Eukaryotic 18S rRNA metabarcodes

that have been reprocessed and
assigned using PR2

Vaulot et al., 2022 [106] https://app.metapr2.org/
metapr2/

UNITE Eukaryotic nuclear ribosomal
ITS region Northern European initiative https://unite.ut.ee/

MIDORI Reference 2

DNA and amino acid sequences used
for taxonomic assignments of

Eukaryota mitochondrial
DNA sequences

Biodiversity Research Center,
Academia Sinica, Taiwan

https://www.reference-
midori.info/index.html

MitoFish Standardized fish
mitochondrial genome

Atmosphere and Ocean Research
Institute, the University of

Tokyo, Japan.

https://mitofish.aori.u-
tokyo.ac.jp/

AeDNA
Aquatic DNA barcodes and genomes;
Habitat types cover rivers, lakes, seas,

glaciers and hot springs.

Institute of Aquatic Biology, Chinese
Academy of Sciences, Wuhan, China http://159.226.163.221/

* All URLs were accessed on 27 August 2024.

4.3. eDNA Metabarcoding-Based Monitoring from the Use of Single to Multiple Primers

eDNA is naturally degrading and can be minuscule in quantity in aquatic environ-
ments. A recent study showed that fish-derived eDNA fragments extracted from natu-
ral seawater samples accounted for only 0.004% of total sequences when using shotgun
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sequencing [12]. Thus, following the DNA collection from environmental samples, spe-
cific/targeted DNA fragments known as the “barcode”, which involves highly conserved
gene regions across species and highly variable regions capable of distinguishing species,
need to be amplified for subsequent high-throughput sequencing and analysis. Appropri-
ate PCR primers for PCR amplification are critical in eDNA metabarcoding-based methods
as they determine the taxonomic coverage of amplified DNA, which can ultimately de-
termine monitoring outcomes [107]. Significantly different diversity was detected when
different primers were used for samples obtained in the same study area and with the
same eDNA metabarcoding workflow [63]. A well-designed primer must consider the
variable and conserved regions of the gene for its intended target coverage and specificity,
in addition to other practical considerations such as amplicon size, structure, and primer
compatibility. Sources of gene sequences that can be referenced for primer design include
verified genome sequences in established reference databases or genome sequences of
target species obtained by sequencing. The performance of designed primers can then
be tested by in silico evaluation [108], in vitro experimental tests [109], and/or surveys in
laboratory aquariums or natural environments [110].

Mitochondrial genes are generally more widely used as marker genes than nuclear
genes, as the copy number of mitochondrial DNA (mtDNA) is larger than that of nuclear
DNA. Since the concentration of genetic materials in the environment is low, mtDNA copies
are more likely to be detected [111,112]. Moreover, current genome databases contain many
mitochondrial DNA sequence information, which eases species identification. The cy-
tochrome b (Cytb) gene, the D-loop gene, and the mitochondrial 12S and 16S ribosomal
DNA are now widely used as molecular markers for eukaryotic species identification,
particularly in fish [113]. A universal primer that targets a specific DNA fragment across
a wide range of taxonomic groups is often used in eDNA metabarcoding-based methods
to facilitate broad-scale community-level study in the marine environment [76]. Targeting
teleost fish, Zhang et al. [13] compared 22 sets of primers for eDNA metabarcoding analysis
using in silico PCR and metabarcoding. In general, commonly used primers designed
to target 12S rRNA genes, such as MiFish-U [114] and Teleo [115], compared to primers
targeting 16S rRNA or COI genes, such as Ve16S [116], FishCBL/CBR [76], etc., were able to
detect higher fish diversity [117]. As reported by Xing et al. [113], the Cytb gene is the most
used marker for species-specific fish detection, followed by COI. For other marine inverte-
brates, some primers are commonly used, such as mlCOIintF/jgHCO2198 [118] targeting
COI genes, 16S_Inv_For/16S_Inv_Rev [119] targeting 16S rRNA. New sets of primers are
also constantly developed, such as MollCOI154/MollCOI255 for marine mollusks [120].

Simultaneous amplification of multiple target fragments using multiple universal
primers enables monitoring of multiple taxa-groups and overall biodiversity in the ecosys-
tem. This is the prominent advantage demonstrated by eDNA metabarcoding-based
methods. For example, Liu and Zhang [121] recommended the simultaneous use of multi-
ple markers for eDNA metabarcoding analyses after investigating biodiversity in deep-sea
sediments using 18S rRNA (V1–2 and V9) and 28S rRNA primers in conjunction. In a
systematic review, groupings of (a) COI and 18S rRNA, and (b) COI, 16S rDNA and 18S
rRNA were the most commonly used strategy for marine eDNA metabarcoding [122]. In
addition, one of the most recognized examples by Stat et al. [12] simultaneously used
10 pairs of primers with nuclear 18S rDNA, mitochondrial COI, mitochondrial 16S rDNA,
and chloroplast 23S rDNA as marker genes targeting Eukaryotes, Metazoans, Fish, Mam-
mals, Crustaceans, Cephalopods, Symbiodinium, Plants, and Prokaryotes, etc., to achieve
“tree of life” metabarcoding at the ecosystem level.

5. eDNA Metabarcoding-Based Monitoring for Marine Conservation and Management

eDNA metabarcoding, which benefits from the development of molecular technolo-
gies and bioinformatics [123], has shown great potential to be used for population- and
community-level or large-scale monitoring with implications for conservation strategies
and policy-making through biodiversity monitoring. This section focuses on complex
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marine environments such as coral reef ecosystems and deep sea to show the application of
eDNA metabarcoding for marine conservation and management. Further, we introduced
regional and/or global monitoring trends by integrating citizen science or machine learning
with eDNA metabarcoding (Figure 2).

5.1. eDNA Metabarcoding for Marine Biodiversity Monitoring

eDNA metabarcoding significantly facilitates and improves the assessment of biodi-
versity in marine ecosystems. It effectively captures community dynamics and has emerged
as a crucial tool for informing management decisions. In 2012, eDNA metabarcoding was
first applied in marine environments for the purpose of fish biodiversity monitoring [76].
The detection coverage achieved with the eDNA metabarcoding method, utilizing only
0.5 L water samples from a temperate marine ecosystem, was reported to be equal to
or superior to that of nine conventional methods, including bottom trawling. Currently,
eDNA metabarcoding is widely employed for monitoring community composition and
structure across spatiotemporal gradients, ecosystem-level assessments [13], ecological
status evaluations [63,124], early warnings of harmful algal blooms [125], and the impacts
of environmental changes and human activities. This method targets various marine
taxa, including fish [126], invertebrates [127], elasmobranchs, cetaceans, and even entire
eukaryotic communities [128]. The below section summarizes the applications of eDNA
metabarcoding in the context of rare or threatened marine species of high conservation
concern, as well as sensitive marine ecosystems and deep-sea environments. It highlights
the advantages and applications of eDNA metabarcoding-based methodologies for marine
environmental protection and management.

5.1.1. eDNA Metabarcoding-Based Monitoring for Rare, Protected, or Threatened
Marine Species

Monitoring the status and population trends of rare, protected, or endangered marine
species is essential for informing conservation efforts and guiding effective management
strategies to prevent further declines and promote recovery. Many of these rare, protected,
or threatened species occur at naturally low population densities or are challenging to
observe, making traditional survey methods ineffective, time-consuming, and resource-
intensive. Recent studies have demonstrated that eDNA metabarcoding-based monitoring
serves as a rapid, safe, sensitive, and cost-effective method for detecting and studying
rare marine species [129]. For instance, the impact of increased human fishing activities
on elasmobranch diversity and richness was revealed through the use of two forward
primers, FishF2 and VF2, along with one reverse primer, “Shark COI-MINIR”, in eDNA
metabarcoding analyses [130]. For species such as sharks, which are challenging to cap-
ture for survey purposes, eDNA metabarcoding detected approximately 44% more shark
species than underwater visual census (UVC) and baited video methods, with a sampling
effort that was two orders of magnitude lower [131]. Notably, sharks were identified
in human-impacted areas where no shark species had previously been recorded using
these methods [131]. Similarly, for threatened cetaceans that exhibit low abundance and
elusive behavior, such as dwarf sperm whales [132], humpback whales, and bottlenose
dolphins [133], diversity can be effectively monitored using 12S rDNA primers, including
Vert01 and Mamm01, within eDNA metabarcoding frameworks. In addition to diversity
assessments, eDNA metabarcoding employing universal primer MiFish-U and modified
primer Elas02 provided rapid and extensive insights into the abundance and temporal
variation of sharks and rays around an Indian Ocean island, surpassing traditional visual
and capture-based techniques [134]. Furthermore, leveraging the advantages of eDNA
metabarcoding to monitor multiple taxa allows for the simultaneous assessment of the spa-
tiotemporal distribution and abundance of marine mammals, such as bottlenose dolphins,
minke whales, and harbor porpoises, along with their foraging fish. This is achieved using
two sets of primers, MarVer1 and MarVer3, offering critical information for understanding
and predicting their distribution and informing conservation strategies [135].
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With the enhancement of methodological infrastructure, such as the establishment of
local reference databases, eDNA metabarcoding methods can detect a broader range of
species diversity, including those that have not been previously observed or recorded in
certain areas. For instance, de la Hoz Schilling et al. [136] identified 27 elasmobranch species
using the MiFish-E (12S) primer set in the Banc d’Arguin National Park, Mauritania, of
which 12 species were newly documented. Notably, 67.9% of the detected species are listed
in the IUCN Red List of Threatened Species. Additionally, the implementation of passive
filter-collection eDNA samplers within nets used for routine fishing activities allows for the
detection of bycatch, including elasmobranchs, while further reducing sampling effort [137].
These vulnerable marine organisms can act as valuable bioindicators, offering insights
into the overall health and functioning of the broader marine ecosystem. Their presence,
abundance, and behavioral patterns may indicate changes in environmental conditions.
Thus, eDNA metabarcoding methods hold significant potential for providing enhanced and
comprehensive information for the future monitoring and protection of these important
marine species.

5.1.2. eDNA Metabarcoding-Based Monitoring for the Vulnerable Marine Ecosystem: Coral
Reef Ecosystem

eDNA metabarcoding methods have proven effective in monitoring community com-
position and structure across diverse habitats [74,126,138]. Marine ecosystems, such as
coral reefs and seagrass beds, are recognized as biodiversity hotspots and are particularly
sensitive to disturbances. The noninvasive nature of eDNA metabarcoding maximizes
its potential for conservation-oriented monitoring. In vulnerable marine environments
like coral ecosystems, which are among the most hyper-diverse and sensitive, traditional
underwater visual census (UVC) methods conducted via scuba diving may be inadequate
for effectively monitoring cryptic organisms residing within coral structures. Visual ob-
structions and limitations in taxonomic identification further compound these challenges.
For example, Brandl et al. [139] reported that half of all reef fish are cryptic species. In
contrast, eDNA-based methods, which rely on the DNA released by organisms into the
environment, mitigate biases associated with visual obstacles. A study collecting 226 sea-
water samples from five tropical regions (the Caribbean, Central and Southwest Pacific,
Coral Triangle, and Western Indian Ocean) demonstrated that eDNA metabarcoding could
monitor a greater diversity of reef-associated and cryptobenthic species compared to UVC
methods [140]. Furthermore, coral spawning and sexual reproduction are critical events
for maintaining coral reef ecosystems, typically occurring at night. Visual observations
during these events are limited by nighttime light conditions, inaccessibility of certain
locations, and the labor-intensive nature of such surveys, which are also prone to bias
and may disrupt coral activities. By comparing eDNA abundance before and after coral
spawning events, eDNA metabarcoding methods successfully monitored the spawning
activities of 37 coral species and an associated 133 fish species that serve as indicators of
spawning, all with reduced physical disturbance to coral reef organisms [141].

Recent advancements in eDNA-based monitoring methods have led to the develop-
ment of coral-specific primers aimed at assessing species diversity (at least to the genus
level) and relative abundance of corals. The efficacy of eDNA metabarcoding for coral
monitoring has been evaluated in comparison to underwater visual census (UVC) methods.
Nichols and Marko et al. [77] were among the first to design primers for amplifying the
COI and 16S genes of coral genera in Hawaii specifically for eDNA metabarcoding. They
created two corresponding primers for relatively short (~120 bp) and long (~400 bp) ampli-
fied fragments for each gene, as detailed in Table 2. When these primers were employed
to estimate coral relative abundance, the eDNA read counts exhibited a high correlation
with coral coverage measured via diving techniques, yielding consistent information re-
garding dominant species. Similarly, Shinzato et al. [142] designed two pairs of primers
(Scle_12S and Scle_COI) based on the mitochondrial genomes of 71 scleractinian coral
species (representing 36 genera and 15 families) sourced from the NCBI database. Their
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findings revealed that 93% and 72% of the PCR-amplified fragments matched 12S and
COI sequences in the database, respectively, demonstrating greater specificity than pre-
vious studies. Currently, the most commonly utilized primers are those developed by
Alexander et al. [143], which include one reverse primer capable of detecting corals, exclud-
ing the genus Acropora, and another primer specifically designed for Acropora detection,
based on ITS gene reference sequences of scleractinian corals in the NCBI database. eDNA
metabarcoding employing these two primer pairs detected coral genera comparably to
results obtained from scuba diving surveys. West et al. [144] further applied these primer
pairs in eDNA metabarcoding monitoring of Lalanggarram marine parks. Although these
methods were able to detect corals at the species level, they required the collection of ben-
thic tissue samples, which conflicts with the original aim of being environmentally friendly.
To enhance species-level monitoring, further enrichment of the ITS reference database
is essential. Dugal et al. [145] established a reference database for 70 local coral species
based on the ITS sequences of 94 coral species, demonstrating that utilizing local reference
databases significantly improved the accuracy of coral species identification. There remains
an urgent need for additional eDNA metabarcoding research focused on coral monitoring,
with objectives to refine methodological processes, including sample optimization and the
enrichment of primers and reference databases, to achieve high efficiency and resolution in
coral monitoring.

Table 2. Reported primers targeting scleractinian corals monitoring using eDNA metabarcoding.

Markers Primer Name Primer Sequence (5′-3′) Target Length (bp) References

16S rRNA HICOR16S_F1 CCGGTATGAATGGTRTCMCGA

Nichols & Marko [77]

HICOR16S_R1 TMCAGTAAAGYTCCATGGGG 120
HICOR16S_R2 GTAACTTTTATTTGYTTATC 400

COI HICORCOX_F1 GAACAAGGRGCKGGBAC
HICORCOX_R1 CCVGGRGCYCKCATRTTAAA 120
HICORCOX_R2 GCAACAAAAGTYGGKATTAT 400

Nuclear ITS SCLER5.8SFor GARTCTTTGAACGCAAATGGC Alexander et al. [143];
West et al. [70];

Dugal et al. [145]
SCLER28SRev GCTTATTAATATGCTTAAATTCAGCG

Coralacro_874Rev TCGCCGTTACTGAGGGAATC

12S rRNA Scle_12S_Fw CCAGCMGACGCGGTRANACTTA ~366–465

Shinzato et al. [142]
Scle_12S_Rv AAWTTGACGACGGCCATGC

COI Scle_CO1_Fw ATTGTNTGRGCNCAYCATATGTTTA
~296–302Scle_CO1_Rv CCCATAGARAGNACATARTGAAA

Monitoring associated and symbiotic organisms in coral reef ecosystems is equally
crucial, as these organisms are integral to the food web that supports trophic transfer.
Thus, a multi-primer approach is necessary to target various taxa, including both micro-
and macro-organism groups. For instance, Dugal et al. [146] using a pair of universal
primers (18S_uni_1F and 18S_uni_400R) targeting the V1–3 hypervariable region of the
18S rRNA genes have successfully detected 14 metazoan phyla and 57 species within
coral reef environments. By employing multiple primers that target mitochondrial 16S
rRNA, COI genes, and the nuclear 18S rRNA gene, a diverse array of taxa—including bony
fish, elasmobranchs, crustaceans, mollusks, and echinoderms—has been simultaneously
identified in coral ecosystems [144,146]. Stat et al. [12] utilized ten pairs of primers to detect
numerous target marine taxa in a single tropical coral reef in Western Australia. These
multi-primer strategies yield more comprehensive outcomes and are increasingly adopted
to meet marine biomonitoring needs. Furthermore, several studies have indicated that
eDNA metabarcoding demonstrates comparable or superior detection performance while
requiring less effort than traditional underwater visual census methods for monitoring
corals [147] and reef fishes [148]. Utilizing eDNA metabarcoding allows for the assessment
of coral community structure [77,142], species diversity, and β/γ biodiversity of reef
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fishes [73,140], as well as coral symbionts [149], echinoderms [150], and their larvae [151].
This approach provides detailed information that can enhance the conservation of coral
reef ecosystems.

5.1.3. eDNA Metabarcoding-Based Monitoring for Deep-Sea Environment

The deep-sea environment, defined as ocean depths below 200 m, encompasses nearly
two-thirds of the Earth’s surface and represents one of the planet’s largest and most biodi-
verse yet least explored ecosystems [121,152]. The significant depths and immense pressure
of the deep sea pose challenges for the deployment of widely available monitoring tools. Re-
mote deep-sea areas are often unfeasible for transportation of monitoring equipment, such
as trawls [81]. Additionally, the complex topography of deep-sea environments—including
steep slopes, rocky substrates, and areas inhabited by sensitive fauna such as corals and
sponges—renders traditional trawling methods inappropriate [64,82]. Visual survey meth-
ods utilizing remotely operated vehicles (ROVs) may be compromised by light requirements
and noise, potentially skewing species observations [152]. In contrast, eDNA metabar-
coding methods are relatively noninvasive, adaptable to the intricacies of deep-sea en-
vironments, and require minimal effort for sampling. For example, Thomsen et al. [81]
demonstrated that eDNA metabarcoding could detect the equivalent of 26 fish families
compared to trawling, achieved through straightforward water sample collection at spec-
ified depths (188–918 m). Notably, eDNA metabarcoding revealed biodiversity levels
approximately 3.9 and 10.1 times greater than those detected by vertical nets and trawls, re-
spectively. Additionally, the community patterns (beta diversity) identified through eDNA
analyses aligned with conventional net sampling for deep-ocean pelagic zooplankton and
fish across depth ranges of approximately 500 to 2500 m [64]. Seamounts, recognized as
biodiversity hotspots within deep-sea ecosystems, are increasingly threatened by climate
change and human activities, including mineral resource exploitation. eDNA metabarcod-
ing has been employed to monitor discrepancies in prokaryotic and eukaryotic communities
across various contexts of seamounts and adjacent abyssal plains [153], as well as to assess
benthic indicator organisms like foraminiferal communities [154]. These efforts provide a
crucial biodiversity baseline for the protection and management of deep-sea environments.
However, the current lack of knowledge regarding deep-sea organisms, coupled with
the scarcity of relevant reference databases, remains a significant constraint to effective
biodiversity monitoring in these ecosystems using eDNA metabarcoding methods [155].

5.2. Integrating Citizen Science with eDNA Metabarcoding: Regional/National to Global
Biodiversity Monitoring

Citizen science programs are increasingly recognized for their ability to combine acces-
sible methods with public engagement, facilitating environmental monitoring over broader
spatial and temporal scales than traditional research allows. By lowering technical barriers
to sampling, these initiatives have seen numerous successful implementations, such as
the Reef Life Survey, which focuses on marine biodiversity [156]. In recent years, several
citizen science projects employing eDNA metabarcoding have emerged at both national
and international levels, targeting freshwater and marine ecosystems. These programs
leverage public participation to enhance monitoring effectiveness. For instance, Miya
et al. [99] engaged volunteers in a citizen science project across six temperate sites in Japan.
Participants received training on eDNA collection and filtration techniques using syringes
and filter cartridges, followed by the collection of water samples. Subsequent DNA ex-
traction, eDNA metabarcoding, and data analysis revealed 66 families and 118 genera of
fish, illustrating distinct spatial biodiversity patterns within the region. Similarly, Ager-
snap et al. [157] coordinated a national “BioBlitz” citizen science initiative utilizing eDNA
metabarcoding to assess marine fish species diversity in Denmark’s coastal zone. This
project mobilized 360 citizen scientists to collect seawater samples from 100 sites, which
were then frozen and dispatched to Aarhus University for analysis within 24 to 72 h. The
project achieved a high sample return rate of 94% and identified a total of 52 fish species,



J. Mar. Sci. Eng. 2024, 12, 1729 17 of 27

representing approximately 80% of Danish coastal fish diversity and 25% of all marine fish
species. These initiatives demonstrate the advantages of integrating citizen science with
eDNA methodologies, particularly in terms of the volume of samples that can be collected
simultaneously—something often challenging for professional researchers. Moreover,
eDNA metabarcoding has shown resilience to procedural failures, enabling citizens with
varying levels of training to conduct biodiversity monitoring with considerable accuracy.
This approach is poised to play an essential role in future large-scale species assessments.
Beyond regional and national efforts, advancements in technology and decreasing costs
have positioned eDNA metabarcoding within the framework of global conservation initia-
tives [158]. For example, the United Nations Educational, Scientific and Cultural Organi-
zation (UNESCO) has launched the Environmental DNA Expeditions in UNESCO World
Heritage Marine Sites project (https://www.unesco.org/en/edna-expeditions, accessed
on 27 August 2024) since 2022. This initiative trains local communities in eDNA sampling
techniques, enabling them to monitor biodiversity over the course of a year. In summary,
the outcomes of these citizen science programs underscore the efficacy of eDNA-based
monitoring for biodiversity assessment at regional, national, and global scales. The findings
generated hold significant potential for advancing large-scale biomonitoring efforts in
the future.

6. Machine Learning (ML)-Assisted eDNA Metabarcoding for Large-Scale Marine
Biodiversity Monitoring

Over the past decade, AI has significantly transformed our capacity to automatically,
accurately, and reliably identify features and patterns within ecological datasets. Machine
learning focuses on developing models from pre-processed training datasets by selecting
suitable algorithms—such as classification, regression, and clustering. These models are
evaluated using a test dataset, allowing for the optimization of the trained model before
applying it to new datasets for accurate predictions [159]. eDNA metabarcoding typically
generates vast amounts of sequencing data, and optimizing machine learning techniques
for predictions from this data can substantially reduce the labor-intensive data processing
typically required by researchers. For instance, Cordier et al. [16] employed supervised
machine learning to analyze eDNA metabarcoding data to predict biological indices (BIs)
that assess Ecological Quality Status. They obtained eDNA data from 144 sediment samples
collected from five salmon farms in Norway, which included operational taxa units (OTUs)
and OTU richness. Using Random Forest and Self-Organizing Map algorithms, they trained
models on data from different samples designated as either the training or test dataset to
predict four BIs related to alpha and beta diversity. Their comparative analysis revealed
that the machine learning predictions closely aligned with results derived from traditional
morphological identification methods. Subsequently, Cordier et al. [17] further extended
their work by training eDNA data from five different molecular markers using a similar
machine learning approach, demonstrating the broad applicability of supervised machine
learning across various molecular markers, with all tested markers generating accurate
predictive models. Similarly, Dully et al. [160] investigated the impact of sequencing depth
on machine learning predictions derived from eDNA metabarcoding, utilizing K-means
clustering and Random Forest algorithms. Their results indicated that a sequencing depth
of 40,000 to 80,000 sequences per sample was necessary for the machine learning methods
to achieve over 80% classification accuracy.

Machine learning techniques utilizing coding algorithms have also been applied in
biodiversity monitoring [161]. In this approach, three coding methods were developed
to encode the four nucleotide bases, along with genus and species names. A traditional
three-layer perceptron neural network was then employed, where the encoded bases
served as the input layer and the corresponding genus and species names as the output
layer. Data from the database were fed into the neural network, which learned through
backpropagation. Following training, the model was capable of automatically recognizing
and classifying new eDNA sequencing data as they were input. These studies demonstrate
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that machine learning can effectively manage large volumes of eDNA metabarcoding data,
enhancing overall processing efficiency. The successful integration of machine learning
into biodiversity assessments based on sequencing data alleviates researchers from labor-
intensive tasks and highlights the necessity for further exploration of ML applications in
eDNA metabarcoding for ecological monitoring and conservation. The effectiveness of
machine learning-assisted eDNA metabarcoding and species identification relies heavily
on high-quality training data, careful feature selection, and thorough model evaluation.

7. Centralized Environmental Database for Enhanced Marine Environmental Baseline
and Impact Monitoring

Local biodiversity and species inventories serve as essential reference databases for
the double verification of emerging monitoring techniques. Benefiting from long-term local
monitoring efforts, a substantial volume of environmental data—including biodiversity, wa-
ter quality, and land use—can be systematically organized into centralized environmental
databases. Such Centralized Environmental Databases facilitate data analysis and visual-
ization, enabling stakeholders to gain insights into the current state of the environment,
assess potential risks, predict future changes, formulate regulations to address existing
issues, and implement effective environmental protection and management strategies. The
integration of environmental data with Geographic Information Systems (GIS) and analyti-
cal tools enhances the accessibility, comprehensiveness, and efficiency of environmental
data management, potentially reducing the need for redundant environmental surveys.
For instance, the Centralized Environmental Database (CED) developed by the Environ-
mental Protection Department (EPD) of Hong Kong (https://eiaced.epd.gov.hk/, accessed
on 27 August 2024) features a GIS-enabled mapping platform that encompasses various
baseline environmental and ecological data, including historical water quality assessments
derived from Environmental Impact Reports. The CED enhances the interpretative power
of innovative noninvasive monitoring technologies by providing a reference database.
This localized ecological dataset can be correlated with emerging noninvasive monitoring
methods—such as underwater imaging and environmental DNA (eDNA) analysis—to
validate findings and improve species detection accuracy. Conversely, data generated
from these advanced monitoring techniques can be integrated into the CED, enriching the
database and facilitating comprehensive trend analyses. Moreover, databases documenting
historical local environmental data provide critical baseline information, including essential
environmental indicators and variations in conditions across different regions [162]. This
information is vital for prioritizing monitoring targets, optimizing resource allocation, and
enhancing the efficiency of environmental oversight. By comparing current monitoring data
with historical baseline data, deviations and trends can be rapidly identified, permitting
the prediction of potential environmental risks through modeling and data analysis [163].

8. The Integration of Underwater Optical Imaging-Based Monitoring and eDNA
Metabarcoding-Based Monitoring for Marine Environmental Conservation

As discussed in previous sections, both underwater optical imaging and eDNA
metabarcoding methods possess distinct advantages. Integrating these two approaches
for marine environmental monitoring can leverage their strengths while mitigating some
limitations, providing more comprehensive data and enhancing monitoring efficiency.
eDNA metabarcoding serves as a complementary method to optical monitoring, expanding
the range of detectable species [164]. For instance, eDNA metabarcoding can effectively
supplement underwater visual surveys in coral reef ecosystems, where cryptic fish and
other species may obscure themselves within the complex structures of coral, making direct
observation challenging. This synergy allows for the detection of a greater diversity of
pelagic and benthic fishes [165]. Notably, the simultaneous use of eDNA metabarcoding
and baited remote underwater video systems has resulted in over a 30% increase in the
abundance of detected fish genera compared to either method used independently. Due
to the inherent limitations and biases of each technique, one method frequently identifies
taxa that the other does not [166]. Valdivia-Carrillo et al. [167] observed that the number
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of fish species detected doubled when integrating underwater visual census with eDNA
metabarcoding.

Overall, as described in Figure 3, eDNA metabarcoding methods facilitate extensive
spatial and temporal monitoring on regional and global scales, owing to their standard-
izable nature across geographical boundaries. These methods can also be effectively
combined with citizen science initiatives and artificial intelligence technologies. In contrast,
underwater visual monitoring allows for the capture of detailed information about marine
organisms and their environments, particularly when complemented by real-time data
transmission and processing systems, which yield high-resolution image data. This capa-
bility compensates for the limitations and cost constraints associated with high-resolution
underwater visual monitoring equipment. In summary, the combination of underwater
optical imaging and eDNA metabarcoding methods creates a synergistic approach that
validates and enhances each technique, offering more reliable baseline information. This
integrated methodology provides a robust framework for marine environmental moni-
toring, yielding valuable insights into biodiversity, ecosystem health, and the impacts of
human activities.
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9. Future Perspectives

Traditional biomonitoring has evolved from simple ecological observations aimed at
identifying and assessing species diversity and abundance to a more comprehensive ap-
proach focused on understanding the underlying functions and interactions among species
and communities. Contemporary biomonitoring is increasingly moving away from manual,
visual, and capture-based methods, which are not only disruptive and unsustainable but
also often fail to provide a holistic view of the ecosystem. The emergence of what we
term “next-generation biomonitoring” may only be achievable through scalable approaches
that harness large-scale data from next-generation sequencing and machine learning tools.
These technologies enable the interpretation of visual data and the reconstruction of ecolog-
ical networks through globally distributed, automated sampling stations and collaborative
efforts [168]. Thomsen et al. [169] have proposed a global eDNA biomonitoring frame-
work that leverages advancements in sequencing technologies—such as long-read and
birdshot sequencing—alongside refined reference databases and artificial intelligence for
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data analysis. This framework emphasizes local sampling, regional sequencing, and global
information sharing, supported by autosamplers, drones, and large-scale citizen science
initiatives to facilitate comprehensive eDNA-based monitoring. Concurrently, advance-
ments in acoustic and optical technologies have paved the way for the simultaneous use of
multiple monitoring tools to achieve global oversight. Besson et al. [168] advocate for the
integration of diverse automated recording instruments—such as eDNA metabarcoding
and digital cameras—to collect large-scale, high-resolution data. Machine learning can then
be employed to detect, identify, and analyze this data, creating accessible pipelines for real-
time, multidimensional, and continuous monitoring of various species. Hartig et al. [170]
have introduced new sensing technologies, including eDNA, acoustic, and optical sensors,
collectively termed the “Novel Community”, to facilitate real-time and long-term monitor-
ing of species and trophic interactions. Looking forward, we anticipate that future trends in
next-generation biomonitoring will be characterized by (1) the integration and simultane-
ous deployment of multiple monitoring techniques; (2) the utilization of machine learning
and artificial intelligence to enhance ecosystem-level understanding and connectivity;
and (3) the implementation of automated monitoring equipment, citizen science projects,
and data-sharing platforms to enable global, real-time, and high-resolution biomonitor-
ing. This review highlights the urgent need for effective and strategic biomonitoring as
a global imperative, necessitating public engagement and interdisciplinary collaboration.
Only through the combined efforts of the scientific community, the public, and various
stakeholders can we begin to better understand and manage our environment.
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