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ABSTRACT
The standards applied to reclassify landslide-conditioning factors
differ among studies and may change the accuracy of identifying
landslide-prone areas. Therefore, we identified two standards per
factor (elevation, aspect, slope, proximity to roads and proximity
to streams) from the existing literature and set them as predispos-
ing criteria in this paper. In addition to the five factors, lithology
represented by types and a landslide inventory map produced
from field surveys were also used in mapping. Thirty-two land-
slide susceptibility maps were generated based on weights-of-
evidence and evaluated using the relative operative characteristic
method. The results show that the subdivision criteria of factors
change the accuracy, with the success rate varying from 84.34%
to 87.51%. The map with the highest value captures more land-
slides in relatively higher susceptibility classes and is therefore
considered the optimal one. Ultimately, a simplified mode of
combining subdivision criteria is proposed to simplify comparison.
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1. Introduction

Landslides are among the most damaging geologic hazards (He et al. 2012; Hadji et al.
2013) and are responsible for extensive loss of life and property. One way to mitigate the
damage caused by landslides is hazard zoning (Pourghasemi et al. 2012).

Researchers have developed many models and methods, such as frequency ratios (Lee
and Lee 2006; Meten et al. 2015), logistic regression (Bai et al. 2010; Timilsina et al.
2014), weight of evidence (Piacentini et al. 2012), three-dimensional deterministic
approach (Xie et al. 2007; Jia et al. 2012), analytical hierarchy process (Hasekio�gulları and
Ercanoglu 2012; Kayastha et al. 2013), artificial neural network (Conforti et al. 2014) and
support vector machine (Yao et al. 2008; Xu et al. 2012). It is important to compare these
different models and methods (Bui et al. 2012a) because the most suitable method
remains undecided. In recent decades, a large number of studies have compared the
different models (Bui et al. 2012a; Mohammady et al. 2012; Shahabi et al. 2014; Cui et al.
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2016; Ding et al. 2016; Hong et al. 2016a; Kornejady et al. 2017; Chen et al. 2017a, 2017b)
to cross check the results from different models and determine which is optimal.

In addition to the models and methods, the quality of the database also influences the
accuracy of susceptibility assessment. To accurately prepare the database of conditioning
factors, ASTER imagery and LiDAR data have been used to produce altitude, slope,
aspect, curvature, stream power index, topographic wetness index, topographic roughness
index and sediment transport index measurements (Nefeslioglu et al. 2012; Song et al.
2012; Jebur et al. 2014). To improve the landslide inventory map, the random forest algo-
rithm was employed to recognize landslides from very high resolution imagery (Stumpf
and Kerle 2011a, 2011b; Chen et al. 2014). Landslides typically occur under complex geo-
logical conditions. It is important to determine the optimal combination of predisposing
factors and to use them to produce an accurate landslide susceptibility map (Wang et al.
2015a). Comparison analysis is therefore also often applied in this process. Hasekio�gulları
and Ercanoglu (2012) successively increased factors in the order of their relative import-
ance and found that a susceptibility map produced from more factors had better accuracy.
Meten et al. (2015) applied mathematical combination theory on eight selected predispos-
ing factors to analyse all combinations and optimized the susceptibility map using a com-
bination of seven factors, without distance from water, according to prediction accuracy.
Wang et al. (2015a) combined factors by adding new ones to four basic factors and
showed that the optimum susceptibility map was obtained from the combination of slope,
lithology, drains, annual rainfall, faults, roads and vegetation. These studies indicated that
some landslide-conditioning factors may cause noise that reduces predictive capability
and should be abandoned. For this reason, the random forest method (Chen et al. 2018)
and the linear support vector machine method (Chen et al. 2017b) were adopted for
the selection of landslide-conditioning factors. Furthermore, distinct spatial resolutions
were used and compared to determine the suitable range of pixel sizes for landslide
susceptibility assessment (Lee et al. 2004; Palamakumbure et al. 2015).

Comparisons have become a mainstream approach in landslide susceptibility
assessment and provide a new perspective for improving mapping accuracy. Prior to the
actual mapping, a factor implemented with a continuous variable must be reclassified
into multi-ranges as input data. The criteria for reclassification vary among studies. For
example, aspect is often classified into Flat, N, E, S and W (Yalcin 2008; Tangestani 2009;
Conforti 2014) or into Flat, N, E, S, W, NE, SE, SW and NW (Regmi et al. 2010; Bui
et al. 2012a; Kayastha et al. 2013; Ozdemir and Altural 2013; Hong et al. 2016a; Zhang
et al. 2016), among many other factors (e.g. slope, elevation, distance from roads and
distance from rivers). Theoretically, the distinction of factor subdivision can change the
topological structure of the input and output data. However, no comparison has been
carried out to assess the effects of the division standards on the accuracy of susceptibility
mapping. This article therefore introduces a novel comparison between different criteria
of factor subdivision. Using the Kongtong District as a case study, six factors were chosen
and classified using the predisposing criteria collected from the existing literature. The
resultant maps combined from different criteria were compared using the relative operative
characteristic method. The optimal combination of criteria for factor subdivision was then
determined based on comparison and found to enhance the susceptibility mapping results.

2. Study area

Kongtong is a district in the Loess Plateau region of China with frequent landslides.
Malan loess is widely distributed, occupying approximately 80% of the area. The study
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area is adjacent to the eastern Liupan Mountains, located at longitudes from 106�25’ to
107�210E and latitudes from 35�12’ to 35�45’N, covering an area of approximately
1,800 km2. The study area has an elevation range of 1,120–2,240 m with slope angles of
0–71� (Figures 1 and 2). According to statistics recorded at Pingliang Weather Station,
the temperature ranges from �25.7 to 37.3 �C with an annual average temperature of
9.4 �C. The annual rainfall varies from 744.5mm (in 1964) to 249.9mm (in 1942) with an
average of 503.7mm. Rainfall is concentrated mainly from July to September.

Jinghe River, flowing through the middle of the district, is the only river in the region
and has a total of 154 tributaries. The loess tablelands, or the residual tablelands, are mainly
distributed north of Jinghe River, spreading NW–SE. The loess ridges and hills are more
developed around the loess tablelands and the intermountain basin. There are also fairly
frequent engineering activities, such as road construction, in the region. Cutting of the
surface often occurs during the construction process, changing the original stress balance
of the slope body, and providing favourable potential energy conditions for the occurrence
of a landslide. According to records in the investigation report on geological disasters
in Kongtong District accomplished by Geo-Environment Monitoring Institute of Gansu
Province in 2007, landslides have occurred frequently and are widely distributed in this area
(Figure 1). In July 1992, Caofeng Town experienced landslides with a direct economic loss
of approximately 45,000 Yuan, and two people were killed by the Sishe landslide in Liuhu
Township. And in August 1993, the Hongzhaobi landslide in Liuhu Township killed seven
villagers and caused a direct economic loss of almost 120,000 Yuan.

3. Data

3.1. Collection

According to Ayalew et al. (2005), the factors selected for the GIS-based assessment of land-
slide susceptibility must be operational, non-redundant, non-uniform, measurable, and repre-
sented over the entire area. Glade et al. (2005) concluded that the selection of predisposing
factors depended on, for example, the scale of analysis, the characteristics of the study area
and the landslide type. Oh and Pradhan (2011) suggested that the input parameters should
be reliable, representative and easily obtained. The most suitable mode is still under debate
in terms of selecting and combining the independent variables for landslide hazard analysis
(Hadji et al. 2013). We selected six parameters as landslide-conditioning factors: elevation,
aspect, slope, distance from roads, proximity to streams and lithology.

Elevation is an important factor in landslide occurrence because of the large variability
in weather conditions and climate at different elevations, which causes differences in soil
and vegetation (Aniya 1985). For the study area, elevation can be generated from contour
lines provided by a 1:50,000-scale topographic map. In contrast to elevation that was
generated with acceptable accuracy, the data sets used for the rainfall and vegetation
indices have poor precision. Elevation was therefore considered as an indicator for rainfall
and the amount of vegetation.

The other topographic conditions involving aspect and slope also play significant roles
in landslide events. Aspect often controls the amount of water in the slopes and hillsides
(Shahabi et al. 2013). Slope is well known as the major factor controlling landslide
formation (Shahabi et al. 2014). Aspect and slope were both calculated from the layer
elevation using ArcMap v.10.3 software.

The river is an important factor as gully erosion may influence the initiation of
landslides. In the mountains, roads often cut the slope, change the surface morphology
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and affect slope stability. The distances from streams and roads were used to describe
the level of influence of the rivers and roads, respectively. In ArcGIS, proximity to
streams and distance from roads were generated using the Euclidean distance function
along the streams and roads. The stream and road information is contained by the
topographic map, and the vector data of streams and roads were extracted in advance
from the map.

Lithology affects the occurrence of landslides because it determines different properties
of weathering processes, infiltration rates (Kavzoglu et al. 2014) and shear strength.
A 1:100,000 geological map was produced from 1:200,000 regional geological maps
with appropriate supplementation during the field survey. The lithological map was
produced from the 1:100,000-scale geological map.

Figure 1. Location map of the Kongtong District in the Loess Plateau region of China, with landslide locations
and elevation.
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With the support of a special funded project for geological hazards, a comprehensive
field investigation was completed and landslide statistics were collected in the study area
according to ‘the basic requirements of county (city) geological disaster investigation
and zoning’ issued by the Ministry of Land and Resources of China. A total of 78 land-
slide points were identified on the map by their GPS coordinates. All landslides were
used for training and testing. The landslide areas range from 270 m2 to .46 km2 and cover
a total of 3.4 km2. Most of them occurred in the middle of the study area (Figure 2).
According to records in the investigation report on geological disasters in Kongtong
District accomplishied by Geo-Environment Monitoring Institute of Gansu Province
in 2007, landslides in the study area destroyed almost 43 buildings and caused 11 deaths,
and still threaten the lives of approximately 13,331 local residents. The landslide inventory
map passed the expert review organized by the Department of Land and Resources of
Gansu Province.

3.2. Map resolution

The choice of resolution has an impact on the precision of mapping landslide susceptibi-
lity. Lee et al. (2004) conducted a comparative study on landslide susceptibility
assessments using distinct spatial resolutions and found that a 30-m pixel was the recom-
mended maximum to achieve acceptable predictive capacity. Palamakumbure et al. (2015)
concluded that 10 m is the optimal pixel resolution for the Sydney Basin. Hengl (2006)
recommended that guidelines must be followed in selecting a pixel size and calculated
the average spaces between contour lines to extract a reasonable pixel size (p), which
is expressed as follows:

p ¼ A= 2 �
X

L
� �

(1)

Figure 2. Spatial distribution map of lithology in the Kongtong District, modified from the Geological Environmental
Monitoring Institute of Gansu Province (2007).

GEOCARTO INTERNATIONAL 5



where A is the area of the entire study region, and RL is the total length of all contours.
A recommended size of 58.6 m was obtained based on Equation (1). However, this region
has many well-developed loess tablelands with relatively thin contour lines and valleys
where the densities of the contours are greater than the average regional value. Therefore,
the optimal pixel size of 20 m was adopted, which is less than 58.6 m. As a result, the
maps of landslide-conditioning factors were converted to form a 20 m� 20 m grid with
2,636 rows and 3,423 columns, with a total of 4,815,503 pixels.

Slope and aspect were derived from the elevation and therefore shared the same reso-
lution. The distances from water and roads were converted into a cell size of 20 m as the
vector data of streams, and roads were also extracted from 1:50,000-scale topographic
maps. Lithology was resampled at the same resolution as the elevation because the geo-
logical map is at a relatively smaller scale.

4. Method

4.1. Factor subdivision

Lithology distinguishes attributes by types, whereas other factors, such as elevation, aspect,
slope, proximity to streams and distance from roads, describe properties based on con-
tinuous variables. Many studies have classified these variables into multi-ranges to express
them as category. Because the reclassification criteria of the landslide-conditioning factors
are the focus of our investigation, the following two sub-sections clarify the standards for
the topographic conditions (elevation, slope and aspect) and linear features (proximity to
roads and proximity to streams; Figure 3).

4.1.1. Topographic conditions

Two criteria were used to reclassify the aspect. Standard i divides the surface into N, E, S,
W and Flat indicating upward facing (Yalcin 2008; Tangestani 2009; Conforti 2014).
Standard ii divides the slope orientation into N, E, S, W, NE, SE, SW, NW and Flat
(Regmi et al. 2010; Bui et al. 2012a; Kayastha et al. 2013; Ozdemir and Altural 2013;
Hong et al. 2016a; Zhang et al. 2016). These two criteria cover almost all the subdivision
modes of aspect used in the existing literature and were used as the predisposing division
techniques for the landslide-susceptibility mapping of the Kongtong District.

The two main standards of slope subdivision were identified from previous studies.
Criterion i regroups the slope into meaningful subclasses. They include flat to gentle slope
(less than 15�), moderate slope (15–25�), fairly moderate slope (25–35�), steep slope
(35�–45�) and very steep slope (greater than 45�) (Tangestani 2009; Kayastha et al. 2013;
Pradhan and Kim 2016). Criterion ii divides the slope into six classes with 10� intervals:
0–10�, 10–20�, 20–30�, 30–40�, 40–50� and >50� (Yalcin 2008; Bui et al. 2012a; Zhang
et al. 2016).

In contrast to aspect and slope, it is impossible to determine the range of elevations
from existing studies similar to that of the Kongtong District, in this case 1,120–2,240 m.
Therefore, the criterion for elevation based on existing research will not completely match
with the study region. However, some guidelines are summarized as follows. For standard
i, elevation is often reclassified in 200-m intervals (Regmi et al. 2010; Hong et al. 2016b;
Pradhan and Kim 2016), whereas 100-m intervals are used in standard ii (Kawabata and
Bandibas 2009; Ozdemir and Altural 2013; Conforti et al. 2014).
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4.1.2. Linear features

The influence of the stream is assumed negligible beyond the longest impact distance,
considered as the effect range. Areas farther than a specific distance from roads were con-
sidered to be simply influenced by instability related to roads. All pixels located farther
than the longest impact distance from rivers or roads had little influence and were there-
fore grouped into a single class.

Figure 3. The input data of the factors reclassified based on different subdivision criteria (E1, A1, S1, R1, and P1) rep-
resent the use of standard i for elevation, aspect, slope, proximity to roads and proximity to streams, respectively; E2,
A2, S2, R2 and P2 represent standard.
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We collected two subdivision criteria from previous studies for the proximity to roads
and the proximity to streams. Standard i for roads produced an effect range value
of 150m, and the distance was regrouped into 0–50, 50–100, 100–150 and >150m
(Che et al. 2012; Hong et al. 2015), whereas the effect range of standard ii was set
as 500m with classes of 0–100, 100–200, 200–300, 300–400, 400–500, and >500m (Bui
et al. 2012b; Mohammady et al. 2012).

The effect ranges for rivers for standards i and ii were set as 300m and 400m,
respectively. The distance from streams was divided into 0–50, 50–100, 100–150, 150–200,
200–250, 250–300 and >300m (Sezer et al. 2011; Che et al. 2012) for standard i, and
0–100, 100–200, 200–300, 300–400 and >400m for standard ii (Lee and Lee 2006; Schicker
and Moon 2012).

The first criterion for distance from roads or streams had a relatively small effect range
on the occurrence of landslides, whereas the second had a larger effect range. Therefore,
a reasonable setting for the effect range could be analysed by comparing susceptibility
maps based on the two distinct criteria.

4.2. Evaluation methods

Weights-of-evidence was first used in mineral exploration in 1988 as a bivariate method
(Bonham-Carter et al. 1988) and was then applied to assess landslide susceptibility after

Figure 3. Continued
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Van Western (2002). This method depends on Bayes’ rule:

P AjBð Þ ¼ P BjAð Þ � P Að Þ
P Bð Þ (2)

where four symbols, B,�B, L, and �L, are used to represent the presence of a specific factor
class, the absence of a specific factor class, the presence of landslides and the absence of
landslides, respectively. Then, pðBjLÞ, pðBj�LÞ, pð�BjLÞ and pð�Bj�LÞ can be calculated using
Equation (2).

This method calculates weights (wþ and w�) to represent the relationship between
landslides (L) and specific factor classes (B) (Bonham-Carter 1994) as follows:

wþ
i ¼ ln

p BjLð Þ
p Bj�L� � (3)

w�
i ¼ ln

p �BjL� �

p �Bj�L� � (4)

where wþ indicates the presence of predictable variables (factor class) at the landslide
positions, and the value of this weight suggests positive mutuality between the presence of
predictable variables and landslides; w� indicates the absence of predictable variables, rep-
resenting the degree of negative mutuality.

Finally, the landslide susceptibility index (LSI) is calculated as the product of the prob-
abilities relevant to the different constituent parts of the model, as represented in
Equation (5):

LSI ¼
X

wþ
i : (5)

4.3. Validation

The mapping accuracy of the resultant map was evaluated by analysing the relative opera-
tive characteristics (ROC) and the frequency distributions in the susceptibility classes.
Using the size under the ROC curve, abbreviated as AUC, both prediction and success
rates were measured to check the reliability and efficiency of the landslide probability
map (Mohammady et al. 2012; Umar et al. 2014; Wang et al. 2015b). In this paper, the
landslide point used for training was also compared with the resulting maps for valid-
ation. The success rate curve provides information on the degree of fitness of the assess-
ment method with the observed landslides (Chung and Fabbri 2003; Remondo et al.
2003). The magnitude of AUC varies from .5 to 1, where a large value indicates high
accuracy, and a small one indicates inaccuracy (Fawcett 2006).

The frequency ratio was calculated for the landslide susceptibility maps generated
under distinct combinations of subdivision criteria by comparing landslide locations with
the susceptibility classes. All landslide points were superimposed over different landslide
susceptibility zones to calculate the frequency ratio for each susceptibility zone.
Theoretically, the frequency ratio values should increase from a low susceptibility zone to
a very high one (Pourghasemi et al. 2012).

5. Results

Table 1 lists the results of the factor subdivision under 11 criteria involving two standards
each for five factors (elevation, aspect, slope, proximity to roads and proximity to streams)
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Table 1. Spatial relationships of landslides with different factors and their weights using the weights-of-evidence
method with 11 subdivision criteria for the factors.

Factor
Subdivision
criterion Classes

Number Of
grids

% of
area

Number of
landslide

% of
landslide Wþ W–

Elevation (m) E1 1,120–1,300 511,449 10.6 9 11.5 .083 .016
1,300–1,500 1,579,500 32.8 44 56.4 .542 –.198
1,500–1,700 1,569,301 32.6 24 30.8 –.057 .113
1,700–1,900 674,968 14.0 1 1.3 –2.392 .141
1,900–2,100 430,493 9.0 0 .0 none .094
2,100-2,240 49,792 1.0 0 .0 none .010

E2 1,120–1,200 165,744 3.4 6 7.7 .804 –.028
1,200–1,300 345,705 7.2 3 3.8 –.624 .043
1,300–1,400 721,847 15.0 19 24.4 .486 –.053
1,400–1,500 857,653 17.8 25 32.0 .588 –.098
1,500–1,600 984,791 20.5 16 20.5 .003 .051
1,600–1,700 584,510 12.1 8 10.3 –.168 .044
1,700–1,800 406,580 8.5 0 .0 none .088
1,800–1,900 268,388 5.6 1 1.3 –1.470 .047
1,900–2,000 280,854 5.8 0 .0 none .060
2,000–2,100 149,639 3.1 0 .0 none .032
2,100–2,200 49,287 1.0 0 .0 none .010
2,200–2,240 505 .0 0 .0 none .000

Aspect A1 Flat 1,277,483 26.6 12 15.4 –.545 .178
N 871,961 18.1 8 10.2 –.568 .115
E 1,093,996 22.7 13 16.7 –.310 .115
S 752,474 15.6 33 42.3 .996 –0.241
W 819,589 17 12 15.4 –.101 .056

A2 Flat 1,277,483 26.5 12 15.4 –.545 .178
N 395,440 8.2 5 6.4 –.248 .033
NE 569,766 11.8 4 5.1 –.836 .084
E 553,177 11.5 2 2.6 –1.500 .101
SE 466,159 9.7 11 14.1 .376 –.017
S 347,088 7.2 12 15.4 .758 –.056
SW 386,513 8.0 25 32.1 1.385 –.211
W 402,616 8.4 3 3.8 –.776 .056
NW 417,261 8.7 4 5.1 –.525 .049

Slope (�) S1 0–15 2,817,022 58.5 40 51.3 –.132 .355
15–25 123,5126 25.7 17 21.8 –.163 .106
25–35 589,343 12.2 18 23.1 .634 –.072
35–45 145,543 3.0 3 3.8 .241 .000
>45 28,469 .6 0 .0 none .006

S2 0–10 2,248,727 46.7 29 37.2 –.228 .278
10–20 1,225,992 25.4 20 25.6 .007 .066
20–30 957,379 19.9 21 26.9 .303 –.020
30–40 311,125 6.5 6 7.7 .174 .004
40–50 60,658 1.3 2 2.6 .711 –.008
>50 11,622 .2 0 .0 none .002

Proximity to
roads (m)

R1 0–50 111,816 2.3 13 16.7 1.971 –.119

50–100 106,295 2.2 5 6.4 1.066 –.030
100–150 85,699 1.8 5 6.4 1.282 –.034
>150 4,511,693 93.7 55 70.5 –.284 1.940

R2 0–100 218,111 4.5 18 23.1 1.628 –.157
100–200 184,453 3.8 9 11.5 1.103 –.057
200–300 171,063 3.6 2 2.6 –.326 .016
300–400 164,094 3.4 5 6.4 .632 –.018
400–500 159,592 3.3 3 3.8 .149 .003
>500 3,918,190 81.4 41 52.6 –.437 1.138

Proximity to
streams (m)

P1 0–50 361,431 7.5 2 2.6 –1.074 .057

50–100 335,620 7.0 2 2.6 –1.000 .052
100–150 268,507 5.6 6 7.7 .322 –.006
150–200 307,614 6.4 9 11.5 .591 –.030
200–250 255,802 5.3 16 20.5 1.351 –.124

(continued)
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and a single standard for lithology. The spatial relationship between the landslides and
each factor was considered by calculating the percentages of area, landslides and weights
of landslides for the classes. Only the positive weight (wþ) was used as a part of the land-
slide susceptibility index, as indicated in Equation (5). Table 1 demonstrates that if a spe-
cific class has no landslides, wþ will have no value in the results. In this case, the LSI is
assigned ‘none’ as the lowest value. This situation was detected, for example, for the
1700–1800 m elevation class, but ignored when 200 m was used as the interval to reclas-
sify the elevation. This finding suggests that standard ii can increase the ‘none’ component
of the LSI, or the lowest value, compared with standard i. For the aspect, the wþ value
varied from �.568 to .996 under criterion i, but between �1.500 and 1.385 under criter-
ion ii. Standard ii broadened the range of the wþ value, which is expected to improve the
range of the LSI and the mapping result because the greater the scope of the LSI, the bet-
ter the susceptibility map, as suggested by Meten et al. (2015). Positive values of wþ

, .632
and .149, were found for classes 300–400 m and 400–500 m, respectively, for the proxim-
ity to roads, but negative values from 300 to 500 m were found when 150 m was used as
the effect range. For proximity to streams, a positive wþ of .015 occurred for 300–400 m
distance in contrast to a negative value of �.627 for distances greater than 300 m because
of the difference in the effect range. This result suggests that the selection of criteria to
reclassify the distance from roads and streams likely affects the outputs, considering that
the LSI is based on wþ.

Table 2 lists the success rates (represented by AUC) of 32 susceptibility maps corre-
sponding to the combination of the subdivision criteria (Figure 4). The subdivision stand-
ard of lithology was not included in the combination because this factor was only
classified by a single mode. All the factors (except lithology) combined in Group 1 were
subdivided by criterion i, producing a map with the lowest value of .8434. The highest
value of .8751 was obtained by Group 29, where elevation, aspect, proximity to roads and
proximity to streams were reclassified using standard ii. To save space, only the maps
generated by groups 1 and 29, indicating the largest difference, were selected for the div-
ision of the susceptibility classes, which helps make the map easier to read. Most research-
ers develop class boundaries in accordance with their own expert opinion, as there are no
common rules to automatically divide such continuous data (Ayalew et al. 2004). In this

Table 1. Continued.

Factor
Subdivision
criterion Classes

Number Of
grids

% of
area

Number of
landslide

% of
landslide Wþ W–

250–300 280,768 5.8 17 21.8 1.319 –.130
>300 300,5761 62.4 26 33.3 –.627 .670

P2 0–100 697,051 14.5 4 5.1 –1.038 .115
100–200 576,121 12.0 15 19.2 .475 –.039
200–300 536,570 11.1 33 42.3 1.334 –.292
300–400 486,664 10.1 8 10.3 .015 .021
>400 2,519,097 52.3 18 23.1 –.818 .538

Lithology – Q4 588,287 12.2 8 10.3 –.175 .045
Q3 345,4614 71.8 62 79.5 .103 .262
Q2 8,793 .2 0 .0 none .002
Q1 105,835 2.2 0 .0 none .022
N 147,429 3.1 8 10.2 1.209 –.054
K 230,897 4.8 0 .0 none .049
J 789 .0 0 .0 none .000
T 146,168 3.0 0 .0 none .031
P 86,661 1.8 0 .0 none .018
O 21,040 .4 0 .0 none .004
2 4,772 .1 0 .0 none .001
Z 20,218 .4 0 .0 none .004
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study, the two selected LSI maps were reclassified into low, moderate, high and very high
susceptible zones (Figure 5), representing 10%, 20%, 30% and 40% of the study area,
respectively (Kayastha et al. 2012, 2013). Figure 6 shows the percentage and the frequency
ratio of landslides in the susceptibility classes calculated by comparing the occurrence of
landslides with the results of the landslide susceptibility map. Over 60% of the landslides
occurred in the very high susceptibility classes for both maps (Figure 6(a)). However, the
high and very high susceptibility classes for the map with the highest AUC contain more
landslides than the same classes for the map with the lowest AUC. This finding means

Table 2. Area under the curves (success rate curve) obtained using different factor classification standards.

Group ID
Combination of

subdivision criteria
AUC
value

Group
ID

Combination of
subdivision criteria

AUC
value

1 E1þA1þ S1þ R1þ P1 .8434 17 E2þA1þ S1þ R1þ P1 .8493
2 E1þA1þ S1þ R1þ P2 .8480 18 E2þA1þ S1þ R1þ P2 .8539
3 E1þA1þ S1þ R2þ P1 .8501 19 E2þA1þ S1þ R2þ P1 .8524
4 E1þA1þ S2þ R1þ P1 .8443 20 E2þA1þ S2þ R1þ P1 .8487
5 E1þA1þ S1þ R2þ P2 .8535 21 E2þA1þ S1þ R2þ P2 .8564
6 E1þA1þ S2þ R2þ P1 .8513 22 E2þA1þ S2þ R2þ P1 .8525
7 E1þA1þ S2þ R1þ P2 .8486 23 E2þA1þ S2þ R1þ P2 .8532
8 E1þA1þ S2þ R2þ P2 .8550 24 E2þA1þ S2þ R2þ P2 .8566
9 E1þA2þ S1þ R1þ P1 .8664 25 E2þA2þ S1þ R1þ P1 .8706
10 E1þA2þ S1þ R1þ P2 .8694 26 E2þA2þ S1þ R1þ P2 .8739
11 E1þA2þ S1þ R2þ P1 .8706 27 E2þA2þ S1þ R2þ P1 .8723
12 E1þA2þ S2þ R1þ P1 .8643 28 E2þA2þ S2þ R1þ P1 .8703
13 E1þA2þ S1þ R2þ P2 .8727 29 E2þA2þ S1þ R2þ P2 .8751
14 E1þA2þ S2þ R2þ P1 .8690 30 E2þA2þ S2þ R2þ P1 .8722
15 E1þA2þ S2þ R1þ P2 .8675 31 E2þA2þ S2þ R1þ P2 .8731
16 E1þA2þ S2þ R2þ P2 .8713 32 E2þA2þ S2þ R2þ P2 .8745

Figure 4. Diagram showing the combinations of the subdivision criteria of five factors; “þ” represents the combin-
ation of subdivision criteria.

12 G. YAN ET AL.



that altering the subdivision criteria helps identify more landslides located in higher
susceptibility classes. Figure 6(b) presents a slight increase in the frequency ratio
from low to high susceptibility classes and an extreme increase from high to very high
susceptibility classes, which indicates that the two maps are both reliable.

Figure 5. Landslide susceptibility maps: (a) map combined from E1þA1þ S1þ R1þ P1, and (b) map combined
from E2þA2þ S1þ R2þ P2.
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6. Discussion

Landslide points that were used in this study were collected through comprehensive field
investigation, but not all landslides were identified. In the middle portion of the study
area, landslides pose serious threats to dense populations and are therefore the focus of
field investigations. In addition, surveys are easy to conduct in the central region because
of relatively easy access by roadway. Landslides occur in other areas, but they attract little
attention because of poor access and low population densities, as is the case in the
Southern and Northern Mountains, and are therefore not mapped and studied. Therefore,
the landslides considered in this research are only those in the more populated areas. The
concentrated distribution of landslides used in this study has a relatively small influence
on the results of this assessment.

The value of AUC decreases in order of Group 9 (.8664), Group 3 (.8501), Group 17
(.8493), Group 2 (.8480), Group 4 (.8443) and Group 1 (.8434; Table 2). Comparing with

Figure 6. Distribution of landslides in different susceptibility classes: (a) percentage, and (b) frequency ratio.
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Group 1, where all the factors were reclassified using standard i, groups 9, 3, 17, 2 and 4
applied standard ii to subdivide aspect, proximity to roads, elevation, proximity to water
and slope, respectively. The values indicate that dividing aspect by standard ii instead
of standard i results in the clearest improvement in the accuracy of the susceptibility
mapping, followed by proximity to roads, elevation and proximity to streams. However,
the subdivision criteria of slope hardly affected the accuracy because the AUC of Group 4
is similar to that of Group 1. The selection of modes for aspect subdivision has a signifi-
cant effect on the accuracy of susceptibility mapping and that of elevation. The more
detailed the subdivision of the aspect and elevation, the higher the accuracy. Making
the effect range of roads and rivers more suitable is meaningful, and we suggest that the
longest distance influenced by roads and rivers should not be set too small, although an
effect range that is too large may not be realistic.

Groups 25, 20, 19 and 18 used standard ii to regroup aspect, slope, proximity to roads
and proximity to streams after elevation was subdivided by standard ii (Table 2). In this
case, the largest increment of the AUC value was also produced when aspect was reclassi-
fied using standard ii, still followed by proximity to roads and streams, whereas the two
standards for slope remained similar. This result means that the subdivision standard
causes a relatively independent effect on the AUC value. Therefore, we propose a simpli-
fied and general mode to combine the different subdivision criteria of factors (Figure 7).
In this mode, it is assumed that there are X landslide-conditioning factors, F1, F2, … ,
FX. For any factor Fx, Nx of the subdivision criteria are considered. The combination of

Figure 7. Simplified mode to combine different subdivision criteria of X factors to determine the best combination.
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‘F11þ F21þ … þ FX1’ is set as the basic reference. For each factor Fi (i¼ 1, 2, … , X),
there are Ni-1 combinations compared with the reference to determine the best one, and a
total of 1þPX

i¼1 Ni � X combinations are considered for comparison in contrast toQX
i¼1 Ni because the subdivision criteria influence accuracy independently. Taking the

data of this article as an example, Group 1 is considered as the reference, and groups 17,
9, 4, 3 and 2 are compared with Group 1 to determine the best combination for elevation,
aspect, slope, proximity to roads and proximity to streams, respectively. Standard ii is the
best option for all the factors, and Group 32 is considered to be the best combination
based on this mode. The AUC of Group 32 is .8745, very close to the highest value
(.8751; Table 2). Using this mode, only some precision is lost, but a large amount of
energy is saved during the process of comparing the subdivision criteria of the factors.

7. Conclusions

In the susceptibility mapping of landslides, the factors implemented based on continuous
variables are often represented by multi-ranges obtained by the subdivision of these fac-
tors. The subdivision criteria vary between studies, even for the same factor. Using the
Kongtong District as a case study, a range of criteria were used to reclassify factors and
compared to enhance the accuracy of the assessment. Two standards for each parameter,
including elevation, aspect, slope, proximity to roads and proximity to rivers, were col-
lected from the literature and set as predisposing modes of subdivision, whereas lithology
was implemented based on types without subdivision. In addition to the above six land-
slide-conditioning factors, a landslide inventory map was prepared based on field surveys
to produce a spatial database, and all observed landslides were used for training and test-
ing. The possible spatial distribution of the landslides was identified by comparing the
occurrences of landslides with the layers of subdivided factors and a positive weight, wþ,
determined using a weights-of-evidence method that worked as a component for calculat-
ing the susceptibility index of landslides.

A total of 32 maps were produced from the combinations of the criteria. The success
rate was represented by the area under the ROC curve and calculated to analyse the
accuracy of the resultant maps. Thus, when aspect, elevation, proximity to roads and
proximity to streams were subdivided using standard ii, the optimal susceptibility map
with the maximum AUC value of .8751 was produced, whereas the minimum value,
approximately .03 less than the former, was calculated when all factors were reclassified
using criterion i. To save space, only the maps with the highest and lowest AUC were
reclassified into four susceptibility classes and compared with the landslide points to cal-
culate the frequency ratio of landslides. The two maps are reliable because over 60% of
the landslides occurred in very high susceptibility zones and the frequency ratio values
increase from the class of low susceptibility to that of very high susceptibility.

In addition, the relationship between the value of the AUC and the combination of cri-
teria shows that aspect produces the largest improvement to the accuracy using standard
ii, which divides this parameter into Flat, N, E, S, W, NE, SE, SW and NW. This result
also indicates that determining a suitable effect range for roads and rivers is significant.
Finally, a simplified and general mode was proposed to combine the different subdivision
criteria of the factors considering that the subdivision standard causes a relatively inde-
pendent effect on the AUC value. The mode saves effort and time during the comparison
of the subdivision criteria of the factors. This study improves the identification of opti-
mized landslide-susceptibility mapping, and the results will serve as an important refer-
ence for future research.
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