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Disentangling Particle Composition to Improve
Space-Based Quantification of POC in Optically

Complex Estuarine and Coastal Waters
Mengyu Li , Fang Shen , Emanuele Organelli , Wei Luo , Renhu Li , Xuerong Sun , and Xiaodao Wei

Abstract— In estuarine-coastal-shelf seas, particulate organic
carbon (POC) shows the highest turnover rates of any organic
carbon pool on the planet, playing a key role in the biolog-
ical carbon pump. Compared with open ocean, estuarine and
coastal waters are affected by large river inputs and show
high hydrodynamic variability, which results in a mixture of
diverse particles that includes inorganic mineral particles, living
algal particles, and organic detritus. The highly complex and
variable particle compositions in estuarine-coastal-shelf waters
pose significant challenges in assessing their distinct roles in the
carbon cycle and total POC. To overcome challenges, we col-
lected biogeochemical and optical in situ data from 2014 to
2020 in estuarine-coastal-shelf waters of eastern China, which
is one of the largest estuarine-coastal-shelf systems in the world,
to develop an algorithm that can optically discriminate particle
composition and estimate their respective contributions to POC.
The algorithm combines the quasi-analytical algorithm and the
semi-empirical radiative transfer algorithm to estimate total
suspended particle concentrations and the mass fraction of
organic particles from which both phytoplankton- and detritus-
related POC fractions are derived. Compared to existing POC
algorithms, this algorithm shows improved retrievals compared
to in situ counterparts, with r2 and root mean squared error
(RMSE) values of 0.84 and 16.57 µg L−1, respectively. The
algorithm is also applied to Sentinel-3/ocean and land color
instrument (OLCI) images for the year of 2020. Applying the
particle component discrimination method can enhance our
understanding of the roles of different particle compositions in
coastal carbon cycling affected by strong land-sea exchange.

Index Terms— Inherent optical properties, particle composi-
tion, particulate organic carbon (POC), sentinel-3/ocean and land
color instrument (OLCI).

I. INTRODUCTION

PARTICULATE organic carbon (POC) refers to organic
carbon associated with particles retained by GF/F filters
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with a pore size of 0.7 µm [1]. These particles, spanning
a wide size range, include phytoplankton and organic detri-
tus [2]. Phytoplankton and organic detritus are key actors of
the ocean’s biological carbon pump and sustain higher trophic
levels [3], [4]. For example, living phytoplankton convert
CO2 to POC through photosynthesis, while nonliving organic
detritus from terrestrial or marine sources can be gravita-
tionally pumped and buried in the seafloor [5]. Recognizing
the composition and contribution of diverse particle types
within the marine POC pool is, therefore, crucial for accurate
estimation of the ocean’s carbon budget [6].

Estuarine-coastal-shelf waters, influenced by large river
plumes and adjoining oceanic processes, exhibit spatial and
temporal variations in particle concentration, composition,
and then their contributions to POC [7], [8]. Particle con-
centration gradually decreases in the seaward direction after
reaching its peak in the turbidity maximum zone (TMZ).
Comparatively, there have been few reports on the particle
composition in estuarine-coastal-shelf waters. In estuaries and
nearshore waters, the reported dominant components are bio-
logical detritus and mineral sediments brought by the river.
Outside the TMZ in the seaward direction, the dominant
components are phytoplankton and their derived particles [9],
[10]. These factors result in significant spatial and temporal
changes in particle characteristics in this area, like particle
composition, which yield complexity in the optical properties
of the surrounding waters [11].

Because marine particles scatter and absorb light, remotely
sensed optical measurements are crucial for monitoring sus-
pended particles and POC in dynamic estuarine-coastal-shelf
seas, where particle characteristics and distributions vary
extensively [12], [13]. The high turbidity and the optical
complexity of estuarine-coastal-shelf waters, however, pose
challenges to using optical methods to invert mineral par-
ticles, phytoplankton and organic detritus proportions, and
contributions of phytoplankton and organic detritus to POC
pool [14], [15]. The development of innovative approaches is,
therefore, needed to improve the reliability of POC estimation
by untangling the complexity of particle composition in these
waters.

Existing bio-optical algorithms for estimating POC using
satellite ocean color remote sensing have primarily been
developed for open ocean waters [16], [17], [18]; however,
applying these algorithms to estuarine-coastal-shelf waters,
where phytoplankton is not the main contributor to POC,
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TABLE I
BRIEF DESCRIPTIONS OF THE IN SITU DATASETS IN THIS STUDY, YRE, YS, BS, AND ECS REPRESENT THE YANGTZE RIVER ESTUARY, THE YELLOW

SEA, THE BOHAI SEA, AND THE EAST CHINA SEA, RESPECTIVELY

Fig. 1. Overview of the idea proposed in this study. Organic and inorganic
components can be separated based on the difference in optical backscattering
properties. Then, organic detritus and phytoplankton can be differentiated
based on the light absorption coefficients. Subsequently, the relationships
between organic-detritus/phytoplankton and their POC contributions are estab-
lished, and further to approach total POC.

leads to significant estimation errors. Previous attempts to
improve POC retrieval in coastal areas have focused on water
classification and local bio-optical models [12], [13], [19].
These approaches not only have limited applicability across
varying conditions but also fail to capture the contributions of
different particle components to the carbon cycle.

This study innovatively addresses the challenge of discern-
ing particle composition in optically complex waters, such as
in Chinese seas, and of assessing the contribution of different
particle types to the POC pool. An overview of the proposed
idea is shown in Fig. 1. To achieve this, we compiled a
comprehensive in situ database of biogeochemical and optical
parameters. By refining existing inversion algorithms, namely
the quasi-analytical algorithm (QAA, Lee et al. [20]) and the
semi-empirical radiative transfer (SERT, Shen et al. [9], [21]),
we estimated the total suspended particle concentration and
particle inherent optical properties using in situ remote sensing
reflectance. Leveraging the QAA-derived particle backscatter-
ing spectral slope, we retrieved the mass fraction of organic
particles and combined it with QAA-derived particulate light
absorption coefficients to quantify the contributions of phyto-
plankton and detritus to the POC pool. This approach is further
applied to Sentinel-3 ocean and land color instrument (OLCI)
data to showcase POC variations in the Chinese seas. The
results of this work provide a first synoptic view of the spatial
distribution of the POC contributions from different sources

Fig. 2. In situ sampling locations of the in situ datasets. The pink
circle, purple triangle, and light blue circle represent the Wei et al. [13]
dataset, the 2020 YS-BS, and YRS cruises, respectively. The blue and light
blue crosses represent the in situ POC validation station and the satellite
validation station, respectively. The coastline is downloaded from SOEST,
while bathymetry maps are from the ETOPO1, version 4.3.1.

and particle components in estuarine-coastal-shelf waters, thus
filling the knowledge gap between the contribution of different
particle sources and compositions to the nearshore carbon
cycle.

II. MATERIAL AND DATA

A. In Situ Dataset

The in situ dataset includes field cruises carried out in
2020 together with the historical dataset compiled by Wei et al.
[13]. (The main parameters used in this study and their brief
descriptions are shown in the Appendix. See Table I for the
brief dataset description). All the locations of in situ mea-
surements and validations are shown in Fig. 2. All sampling
and measurement methods are the same for the two datasets,
following the same processes and protocols.

The field cruises in 2020 were carried out in estuarine-
coastal-shelf waters of eastern China, e.g., in the Bohai
Sea (BS) and Yellow Sea (YS) in May, and the Yangtze
River Estuary (YRE) in July, collected samples in 107 sta-
tions. Measurements included simultaneous measurements of
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the particulate optical backscattering coefficients (bbp, m−1),
phytoplankton and nonalgal absorption coefficients (aph and
aNAP, respectively, m−1), chromophoric dissolved organic mat-
ter (CDOM) light absorption coefficient (ag, m−1), organic
suspended matter mass fraction (OSM, %), remote sensing
reflectance (Rrs, m−1), and total suspended particulate matter
(TSM, g L−1). The historical dataset of Wei et al. [13] included
data acquired in the YRE, YS, BS, and East China Sea (ECS)
during the period from 2014 to 2015. This dataset is composed
by simultaneous measurements for 208 measurements of Rrs,
bbp, TSM, particulate absorption coefficient (ap, m−1), ag, and
POC.

1) Water Sampling: Surface water was collected from 3 m
depth using a rosette system equipped with Niskin bottles
and a conductivity-temperature-depth profiler (CTD, Seabird
911). For ap, seawater (0.1–3 L) was filtered onto Whatman
GF/F Glass Microfiber Filters (pore size: 0.7 µm, diameter:
25 mm) under low vacuum pressure onboard, while some
filters were stored as blank, following the NASA ocean
optics protocols [22]. For samples collected to analyze particle
characteristics (TSM, POC, and organic suspended matter
mass fraction), seawater (1 − 4 L determined according to
water turbidity) was filtered on prerinsed, precombusted, and
preweighed Whatman GF/F Glass Microfiber Filters (pore
size: 0.7 µm, diameter: 47 mm) under low vacuum pres-
sure [22], [23]. For the analysis of the CDOM, the water was
sampled through filtration on board using Millipore polycar-
bonate membrane, (pore size: 0.22 µm, diameter: 47 mm)
under low vacuum immediately after sampling, into the pre-
soaked and precombusted borosilicate glass vials according
to Pegau et al. [24]. All particle samples were stored in the
−40 ◦C cleaned refrigerator until analysis when back at the
laboratory.

2) Optical Measurements:

a) Light absorption properties: ap(λ ), aph(λ ), and
aNAP(λ ) (see Table V) were measured with a PerkinElmer
Lambda 1050 UV/VIS spectrophotometer equipped with a
15 cm integrating sphere in the laboratory, inside the sphere
within the range 200–1000 nm at 2 nm resolution and 1 nm
interpolation, following the NASA and IOCCG ocean optics
protocols [24], [25]; aph(λ ) and aNAP(λ ) were determined
using the method proposed by Röttgers and Gehnke [26],
subtracting measurements acquired after pigment extraction
in methanol from ap; ag were measured from 250 to 900 nm
using a 10 cm quartz cuvette referenced to the Milli-Q water
by the PerkinElmer Lambda 1050 UV/VIS spectrophotometer,
after being unfrozen and warmed to room temperature under
fully dark conditions; ag(λ ) was then obtained according to
the method proposed by Pegau et al. [27].

b) Optical backscattering properties: The volume scat-
tering function β(λ , θ) at a single angle in the backward
direction, θ = 124◦, was collected at nine wavelengths (412,
440, 488, 510, 532, 595, 650, 676, and 715 nm) with WetLabs
ECO BB9 meter between 0 and 5 m. Raw data were processed
according to the ocean optics protocols [28]. β(λ , θ) was
obtained according to the users’ manual [29]. bbp (λ ) was

Fig. 3. Typical spectra of Rrs(λ ) collected in this work.

estimated from β(λ , θ) as

bbp(λ ) = 2πχp(124◦)[β(λ , 124◦) − βw(λ , 124◦)] (1)

where χp(124◦) is a spectrally independent nondimensional
factor that relates the particulate backscattering coefficient to
volume scattering at 124◦ in the backward direction [30], [31],
[32], and βw(λ , 124◦) is the volume scattering coefficient of
seawater [33], [34]. Based on Sullivan et al. [35], it was used
χp(124◦) = 1.076.

c) Remote sensing reflectance: In situ Rrs(λ ) spectra
were derived from above water measurements of sea surface
upwelling radiance (L tot), downwelling sky radiance (Ls), and
downwelling solar irradiance (Ed) from 350 to 900 nm with
1 nm interval acquired by the Hyperspectral Surface Acquisi-
tion System (HyperSAS, Sea-Bird Scientific Inc.). Rrs(λ ) was
obtained as follows:

Rrs(λ ) =
L tot(λ ) − ρsky(λ )Ls,sky(λ )

Ed(λ )
(2)

where L tot is the sea surface upwelling radiance, Ls,sky(λ ) is
the sky incoming spectral radiance, and ρsky(λ )is the sky radi-
ance spectral reflectance. Ls =ρsky(λ ) Ls,sky(λ ). The spectral
optimization approach was applied to remove surface-reflected
skylight [36]. The details are described in Shen et al. [37] and
Sokoletsky and Shen [38]. The range of Rrs(λ ) features used
in this work is shown in Fig. 3.

3) Particle Characteristics: TSM samples were gravimet-
rically analyzed, as outlined in Strickland and Parsons [23]
and Neukermans et al. [39]. The filters were gently washed in
the laboratory with MilliQ water to remove friable fractions
and then dried at 75 ◦C for 1 h. Then they were weighed on
a balance to record the initial weight (w1) with a precision
of 0.01 mg. Seawater samples were filtered after collection
to record the volume (V ). Then, the filters and funnel were
gently washed with MilliQ water after filtration to remove
salt and then stored in darkness at −20 ◦C. After the cruise,
samples were dried at 75 ◦C until the weight got stable and
then weighed after they were put in glassware for ≥4 h to cool
at 45 ◦C. Then, the samples were weighed on the same balance
to obtain w2, from which total suspended matter (TSM) was
calculated with (w2–w1)/V .

The particle composition was determined by the loss-on-
ignition method [40]. To obtain inorganic suspended matter
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mass fraction (ISM, %) and organic suspended matter mass
fraction (OSM, %), the weighted filters were subsequently
placed in a muffle furnace at 550 ◦C for more than 4 h until the
weight unchanged with an accuracy of 0.01 mg, and then all
the organic materials were assumed to be combusted. The fil-
ters were reweighed to obtain ISM, and the difference between
TSM and ISM yielded the concentration of OSM [41].

The particulate volume concentration across different sizes
was collected using the LISST-200X particle size analyzer
(Sequoia Scientific Inc.). The collected raw data with a clean
water background were processed by the LISST-200X soft-
ware into volume concentration for 1 − 500 µm 36 size
classes [42].

In situ POC concentrations (µg L−1) were determined in
the laboratory following the Joint Global Ocean Flux Study
measurement protocols [43]. Samples were dried and acidified
to remove carbonates [44], then dried again for measuring
organic carbon using the elemental analyzer (Vario EL-III,
Elementar, Germany). A similar analysis was done to deter-
mine the background organic carbon content on unused (blank)
precombusted filters from the same batch of filters that were
used to prepare samples.

B. Satellite Data and Processing

Sentinel-3/OLCI Level-1B full-resolution images
(OL_1_EFR, 300 m) were collected from the European
Space Agency Copernicus Open Access Hub (https://scihub.
copernicus.eu/dhus/#/home). We used the Case 2 Regional
Coast Color (C2RCC) algorithm atmospheric correction
processor in the European Space Agency (ESA) Sentinel-3
toolbox. The algorithm is based on an artificial neural network
inversion model to derive water-leaving radiance and in-water
optical properties [45], which is more applicable in the China
Shelf Sea [46], (see Supplement document, Fig. S1, and
Table S1 for detailed comparisons and validations). Algorithm
information can be obtained at https://c2rcc.org/.

C. Error Tests

The performance of the proposed model to detect POC
and its phytoplankton and organic detrital components in
estuarine-coastal-shelf waters (see Sections III and IV) was
quantified using the coefficient of determination (R2), mean
absolute percentage error (MAPE), and root mean squared
error (RMSE), calculated between in situ measurements and
model-derived estimates as follows:

R2
= 1 −

∑N
i=1

(
X i,E − X i,M

)2∑N
i=1

(
X i,M − X i,M

)2 (3)

MAPE =
1
N

N∑
i=1

∣∣X i,E − X i,M
∣∣ (4)

RMSE =

[
1
N

N∑
i=1

(
X i,E − X i,M

)2

]1/2

(5)

where N is the number of samples, X is the IOPs, TSM or
POC, E and M represent estimated and measured variables,
respectively.

III. METHOD DEVELOPMENT

A flowchart of the method and processing procedures
applied in this study is shown in Fig. 4, which includes tuning
the QAA and SERT algorithm described in Sections III-A
and III-B to obtain bbp(λ ), γ , aph(λ ), aNAP(λ ) and TSM from
Rrs(λ ). In addition, the relationship between OSM and bbp(λ )

spectral slope γ in Section III-C, the distinction between phy-
toplankton and organic detritus particles, and the estimation
of their POC contributions to the total POC concentration in
Section III-D, have been explored.

A. QAA Tuning

The QAA is a semi-analytical algorithm that derives IOPs
such as spectral light absorption and backscattering coeffi-
cients from rrs, originally developed by Lee et al. [20] and
now updated into the sixth version (QAA_v6). QAA_v6 is
mainly applicable to the open ocean, and thus, there are still
large uncertainties in deriving optical properties for optically
complex waters [14], [47], [48]. Hence Wang et al. [14]
developed a new QAA algorithm (QAA_Wang) based on
QAA_v6, which was specifically designed for turbid and
optically complex estuarine and coastal waters. In this study,
a total of 161 synchronous optical measurements were used to
recalibrate the empirical steps (S2 and S7 in Fig. 5). Instead
of using the holdout cross-validation to divide data into 70%
training and 30% validation, the k-fold method powered by
MATLAB R2020b was used.

This work is mainly based on QAA_Wang algorithm
(Wang et al. [14, Table 3]), and Step 9 in this work is from
Step 9 in QAA_v6. Fig. 5 shows the algorithm flow based on
QAA_Wang in this study. In Step 4 of the original QAA_Wang
algorithm, the relation between bbp(λ ) slope γ and single-
band bbp shows low R2 at 0.22, which may lead to low
accuracy in estimating γ [14]; therefore, a two-band algorithm
is introduced here to obtain γ [49].Then, the coefficients in
Step 7 are updated with in situ measurements. In addition,
in Step 9, an assumption of ag(682) based on in situ data is
introduced to calculate aph. Above all, the relationship of each
variable in the updated is shown in Fig. 6, while the detailed
coefficients and formulas are shown in Table II.

First, with λ0 = 490 nm as the optimal reference
wavelength, the values of anw(665) and anw(682) show a
high correlation with Rrs(665)/Rrs(490) and Rrs(682)/Rrs(490),
respectively [R2 is 0.87, Fig. 6(a) and (b)], while the detailed
equations and coefficients are shown in Table II. Then,
bbp(665) and bbp(682) are obtained according to the analytical
Step 3. bbp(λ ) is spectrally dependent and can be fit to the
power function: bbp(λ ) = bbp(λ0)(λ /λ0)

−γ , where λ0 is the
reference wavelength, and γ is the dimensionless spectral
slope, γ can be analytically derived as Step 4 shown in
Table II. The bbp slope 665–682 ranged from 0 to 2.78 (Sup-
plement document, Fig. S2). Then the empirical relationship
of ap(443) and bbp(682) has been tuned with in situ data and
is shown in Fig. 6(c) with high correlation coefficients with
R2 as 0.86. In Step 8 of QAA_Wang, adg(λ ) is obtained.
According to the in situ CDOM spectrum, the in situ mea-
surements of ag(682) are relatively stable, the average of the
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Fig. 4. Flowchart of the method and processing procedures developed in this study. The blue boxes represent inputs, the yellow boxes represent processes,
the green boxes represent the output parameters, and the orange boxes represent validations.

Fig. 5. Flowchart of the tuning QAA algorithm for estimating aph(λ ) and anap(λ ) from Rrs(λ ). Step numbers are denoted as S. The solid lines show the
steps from QAA_Wang, while the dotted lines are the steps from QAA_v6. The orange lines represent the empirical steps recalibrated with in situ data.

TABLE II
DETAILED QAA EQUATIONS OF THE TUNING APPLIED IN THIS STUDY FOR OPTICALLY COMPLEX WATERS

TABLE III
α AND β CONSTANTS FOR SENTINEL-3/OCLI IN THE SERT MODEL. THE

BOLD ANNOTATIONS REPRESENT THE BANDS
AND THEIR R2 USED IN THIS STUDY

219 measurements is 0.0045 m−1, and the standard deviation
is 0.0029 m−1, with less than 10% influence on in situ ap(λ ).

Thus, the average value of ag(682) was used to participate in
the calculation.

By using the independent validation dataset, the perfor-
mance of the tuned QAA was evaluated and compared with
independent in situ measurements, together with the results
of error statistics. In general, the estimates compared reason-
ably well with independent in situ observations (Fig. 7, all
p < 0.01). For the QAA algorithm, R2 are 0.89 and 0.88,
respectively, observed for bbp(665) and bbp(682) estimates,
with RMSE at 0.02 [Fig. 7(a) and (b)]. It can be observed
that there is overestimation in the low values of the two
bands, as well as underestimation in the high values; however,
γ is calculated using two highly correlated bands, which
can effectively mitigate error propagation resulting from the
estimation error of a single band, thus reducing the impact
on γ estimation and subsequent OSM calculations. R2 value
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Fig. 6. Tuning of QAA empirical steps using in situ optical measurements for the Chinese optically complex waters. (a) Rrs(665)/Rrs(490) versus anw(665)
for S2 in Fig. 5, (b) Rrs(682)/Rrs(490) versus anw(682) for S2, (c) bbp(682) versus ap(443) for S7 in Fig. 5, and (d) ag(682) in situ measurements and the
average value at 0.0045 m−1.

Fig. 7. (a) In situ measured bbp(665) versus estimated bbp (665) from Rrs(λ ) by QAA. (b) In situ measured bbp(682) versus estimated bbp (682) from Rrs(λ )

by QAA. (c) In situ measured aNAP(682)/ap(682) versus estimated aNAP(682)/ap(682) from Rrs(λ ) by QAA. The gray dashed lines represent the 1:1 line.

of 0.44 (p < 0.01) is observed for the aNAP(682)/ap(682),
with estimations distributed along the 1:1 line and MAPE and
RMSE of 66.20% and 0.25%, respectively [Fig. 7(c)]. ap(443)
validation is in Supplement document, Fig. S3, with RMSE of
0.1321 m−1 and MAPE of 59.33%.

B. SERT Tuning

The SERT model [9], [37] is expressed as

TSM =
2αRrs(λ )

β
[
α − Rrs(λ )

]2 (6)

where the unit of the TSM is g/L and coefficients α and β vary
with wavelengths. To apply the algorithm on Sentinel 3 OLCI,
in situ Rrs data are simulated according to OLCI wave bands to
obtain α and β. A total of 200 matched TSM and Rrs(λ ) data
were collected, with 140 samples (70%) selected randomly as
the training dataset, leaving 60 independent samples (30%)
for validation. The α and β are given in Table III. The Rrs
at 620–709 nm are selected (R2 > 0.8) in this work for
the multiband switching strategy of SERT in turbid waters to

avoid reflectance saturation and maintain sensitivity to TSM
variation.

The independent validation dataset (N = 40) was used, and
the performance of the SERT model with original parameters
(SERTor) and the recalibrated SERT algorithm for Sentinel-
3/OLCI (SERTOLCI) for estimating TSM was evaluated and
compared with the in situ measurements (Fig. 8). In general,
the SERTOLCI performs better than the SERT model with
the original two parameters. TSM calculated by the original
SERT model is overall higher than the measured data. For
the SERTOLCI algorithm, a high agreement is found with R2

of 0.91 (N = 40), while the points are distributed along the
1:1 line.

C. Particle Type Differentiation

To estimate the quantity of organic matter in POC, we need
first to exclude inorganic mineral particles from TSM. Further,
living phytoplankton and organic detritus can be classified
from the OSM. The inherent optical properties of suspended
particles in natural waters vary widely, providing optical clues
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Fig. 8. In situ TSM versus estimated TSM using the SERT algorithm
proposed by Shen et al. [9] and adapted to Sentinel-3/OLCI bands. The red
circles represent the TSM calculated based on the original parameters, while
the blue circles represent the estimated TSM based on the tuned algorithm
for Sentinel-3/OLCI in this study.

to distinguish different particle types once mass concentration
information has been removed [50], [51]. Thus, here, the
spectral slope of bbp(λ ), γ , has been proposed as an indicator
of the particle composition in the coastal environment [11],
[52], [53].

We used simultaneous γ and OSM proportion data of
77 stations in the dataset and randomly divided them into
modeling and validation datasets in 1:1 ratio. Data pairs of
38 points are applied for analyzing the relationship between
γ and OSM proportion [Fig. 9(a)]. The independent validation
dataset (N = 38) was used to evaluate the OSM proportion
estimated from the IOPs and compared with the in situ data in
Fig. 9(b), with the error statistics results shown together. The
relationship between OSM proportion and γ was identified as

p − OSM = 0.22γ 4.06(R2
= 0.81, N = 39). (7)

In Fig. 9(a), OSM proportion was significantly correlated with
γ (R2

= 0.81) and increased as γ increased. The correlation
between estimates and measured data for the OSM percentage
[Fig. 9(b)] is significant (p< 0.01) with R2 equal to 0.74 and
low MAPE and RMSE (66.20% and 0.24%, respectively).

D. Organic-Particle-Type-Based POC Estimation

After the separation of OSM from TSM, OSM needs to be
further divided into phytoplankton and organic detritus compo-
nents, since the contribution of each component to POC may
be different. Although natural water particles are extremely
complex, here it is assumed that the primary contribution
to POC comes from phytoplankton during the phytoplankton
bloom. In estuaries with low phytoplankton content and in
the TMZ, it can be assumed that the contribution to POC is
primarily from organic detritus. It is, therefore, necessary to
select representative in situ measurements with POC domi-
nated by phytoplankton and organic detritus to establish the
relationships between the each POC contributing components
and OSM.

To distinguish between in situ stations where POC is
primarily contributed by phytoplankton from those where
organic detritus is the main contributor, it is necessary to intro-
duce Qbbe (backscattering efficiency). Qbbe(λ ) indicates the
dominant particle composition [54]. Qbbe values in a typical

phytoplankton environment (in the laboratory or algal bloom)
are reported less than 0.01 [55], [56]. Qbbe in the near-bottom
layer or in the coast and estuary dominated by mineral and
organic detritus is significantly greater than phytoplankton by
two orders of magnitude [57]. Based on this, POC at stations
with Qbbe(682) less than 0.01 were classified as primarily
contributed by phytoplankton, while stations with Qbbe(682)
greater than 1 were classified as primarily contributed by
organic detritus, others were classified as POC contributed by
mixed particles.

Assuming the particles were spherical [52], Qbbe(λ ) was
calculated as follows [58], [59]:

Qbbe(λ ) = bbp(λ )/ac (8)

where ac is particle cross-sectional area concentration, which
can be obtained according to Wang et al. [59]. Overall, the
results show a total of 31 stations with Qbbe(682) less than
0.01, and 44 stations with Qbbe(682) more than 1 (the locations
of each category are shown in the Supplement document
Fig. S4). For each component, 21 and 30 stations of POC were
randomly selected from each category, respectively (90% of
total selected station), as representative of the phytoplankton
(POCphy) and organic detritus (POCd) contributions to POC.
The contribution of phytoplankton and detritus OSM mass to
POC was then calculated separately (R2

= 0.44 for POCphy,
N = 21; R2

= 0.87 for POCd, N = 30; Fig. 10).
For mixed particle situation (0.01 ≤ Qbbe(682) ≤ 1), aph(λ )

peak of chlorophyll-a (Chla) at 682 nm and aNAP(λ ) to deter-
mine the proportion of ap(λ ). Because of the different optical
signatures between phytoplankton and organic detritus related
to phytoplankton pigments, aNAP(λ )/ap(λ ) and aph(λ )/ap(λ )

at about 682 nm are very different. For the case of nonalgal
particles dominated waters, ap(682) and aNAP(682) of those
samples almost coincide, while there is a large difference
between ap(682) and aNAP(682) in phytoplankton-dominated
samples. This is used to distinguish the contribution percentage
of various component OSM contents to POC at stations
characterized by mixed particle composition. By combining
the relationships established for each component OSM contri-
bution to POC, we calculate the total POC content. Thus, the
total POC is then computed as follows:

POCt =POCphy + POCd, where POCphy =76.242OSM0.27
phy

POCd = 37.324OSM0.95
d (9)

while OSMphy and OSMd were obtained from the fraction of
aNAP(λ )/ap(λ ) and aph(λ )/ap(λ ), which provides the contri-
bution percentage of each component to the OSM.

The randomly selected samples (10 for POCphy; 14 for
PODd; 60 for POC) are used for validation (10% of total
selected stations). Most points are distributed across the 1:1
line (Fig. 11). Fig. 11(a) shows the validation result of POCphy
estimation, with R2

= 0.41 (N = 10, p< 0.01). The compar-
ison between POCd estimation and in situ measurements is
shown in Fig. 11(b), with R2

= 0.74 (N= 14, p< 0.01). For
the validation of total POC estimation shown in Fig. 11(c), R2

is 0.71 (N = 60, p< 0.01).
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Fig. 9. (a) Relationships between the OSM proportion and the bbp(λ ) spectral slope γ . The dotted red line indicates the fit curve. (b) In situ measured OSM
concentration percentage versus estimated OSM concentration percentage. The red dashed line indicates the 1:1 line.

Fig. 10. Relationship between (a) phytoplankton-dominated samples OSM concentration and POC and (b) detritus-dominated samples OSM concentration
and POC. The dotted red line indicates the fit curve. The dominated particle type is determined by Qbbe(682) in this section.

Fig. 11. Comparison between each component of POC contribution and total POC estimation in this study and in situ POC measurements (a) POCphy,
(b) PODd, and (c) total POC. The dashed gray lines represent the 1:1 line.

IV. RESULTS

A. Validation for Rrs , OSM, and TSM

Rrs, OSM, and TSM results obtained from OLCI images
after C2RCC atmospheric correction are validated using in situ
data during the 2020 cruises. We selected satellite images
taken within 3 h before and after the sampling time at each
station. Using the sampling point as the center, we calculated
the spatial average of a 3 × 3 pixel area to obtain the Rrs
detected by the satellite at that station. The ten matchup
stations between the Sentinel-3/OLCI overpasses and in situ
data were used for the validation of the OLCI Rrs, TSM, and
OSM. The validation results are shown in Fig. 12.

Fig. 12(a) and (b) show the comparations of Sentinel-3/
OLCI atmospheric-corrected Rrs of 665 and 682 nm with
in situ measurements. Overall, the applicability of the C2RCC
atmospheric correction algorithm in optically complex envi-
ronments is good (N = 47, p< 0.05), with points distributed
along the 1:1 line. For the 665 nm, the RMSE is 0.0018 sr−1,

and the MAPE is 48.91%. For the 682 nm, the RMSE is
0.0018 sr−1, and the MAPE is 50.67%.

A comparison of the retrieved OSM from Sentinel 3/OLCI
to the in situ OSM is reported in Fig. 12(c) (N = 11, p < 0.05)
and shows RMSE of 6.88% and MAPE of 21.85%. As for the
SERT validation, the results are shown in Fig. 12(d) (N =

14, p < 0.05). The RMSE is 0.0025 g L−1, with a MAPE
of 34.54%. The result demonstrates the improved-coefficient
SERT developed in this study gave good TSM estimates in
the study area; therefore, in spite of the lack of POC in situ
data collection in 2020, the validation based on atmospheric
correction results, in situ Rrs, TSM, and OSM data confirms
the applicability of the algorithm developed in this study.

B. Sentinel-3/OLCI-Derived POCphy , POCd , and Total POC

Sentinel-3/OLCI for the entire year of 2020 was processed,
and monthly average POCphy, POCd, and total POC were
calculated, as shown in Figs. 13–15. It should be noted that
due to high cloud cover in the data for January and December
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Fig. 12. Match-up comparisons of (a) Rrs(665), (b) Rrs(682), (c) OSM, and (d) TSM obtained from Sentinel-3/OLCI and in situ measurements. The dashed
gray line represents the 1:1 line.

2020, the monthly average products still contain significant
blanks. Because of the significant sun glint in the southeast
part of the East China Sea, the data quality from Sentinel-
3/OLCI imaging in that area cannot be guaranteed. As a result,
POC values in this region should be regarded with suspicion.

Fig. 13 shows Sentinel-3/OLCI POCphy retrieved from
January to December 2020. Overall, noticeable seasonal and
spatial differences were observed in POCphy. In general,
POCphy remained below 50 µg L−1 at the mouth of estu-
aries, estuarine TMZ, and Subei Shoal throughout the year;
however, there were significant seasonal variations at the
estuarine particle front. During winter (DJF), POCphy val-
ues generally remained lower than in spring and summer
(below 80 µg L−1). In spring (MAM), POCphy was primarily
concentrated in the central BS and along the coastal particle
front, with the highest levels in May reaching around 200 µg
L−1 at the particle front outside YRE and in the central BS,
then it gradually decreased in the summer and autumn. Fig. 14
illustrates Sentinel-3/OLCI POCd retrieved from January to
December 2020. It is observed that there were POCd also
significant seasonal-spatial distribution variations. Primarily,
in the areas around the Yangtze River, the Yellow River,
the Liaohe River, and the Yalu River estuaries, inside of
their TMZ, the Hangzhou Bay, and the Subei Shoal, POCd
values maintain high levels throughout the year (greater than
100 µg L−1), with the highest levels found within the Subei
Shoal and Hangzhou Bay, consistently exceeding 800 µg L−1.
Additionally, during the winter and early spring, high POCd
values are widespread in the central BS and at the particle
plume outside the YRE. In contrast, during the summer, the

high POCd area is less, increasing gradually in the autumn;
therefore, by adding the distributions of POCphy and POCd,
the total POC values were obtained, as shown in Fig. 15.
It is shown that in the total POC, POCd made the primary
contribution in estuarine and nearshore areas, while outside
the estuaries, POCphy constitutes the major component.

V. DISCUSSIONS

A. Particle Compositions Discrimination

The estuarine-coastal-shelf sea regions connect the carbon
cycle between continents and oceans and also lead to relatively
active carbon cycling. POC sources in this region are complex,
from rivers delivering large amounts of terrestrial particles
to oceanic phytoplankton production and cycling [60], [61].
Distinguishing and identifying the contributions of detrital
particles and phytoplankton from estuaries is vital for estimat-
ing the carbon sequestration capacity and the global carbon
contribution of coastal and estuarine waters [62], [63].

Remote sensing-based estimates of POC in open waters
have achieved a relatively well-established accuracy range
accepted by the community [1], [64]. In open ocean areas,
variability in the inherent optical properties of particles is
primarily driven by a mixture of phytoplankton and covarying
detritus, which are the major contributors to POC. In the
estuarine-coastal-shelf waters, POC sources vary from marine,
estuaries, riverine, etc., including contributions from phy-
toplankton and organic detritus [65], [66]. These multiple
sources not only contribute to different POC components but
also result in an extremely complex combination of the optical
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Fig. 13. 2020 monthly averaged Sentinel-3/OLCI POCphy images in the Eastern Seas of China. (a) January. (b) February. (c) March. (d) April. (e) May.
(f) June. (g) July. (h) August. (i) September. (j) October. (k) November. (l) December.

Fig. 14. 2020 monthly averaged Sentinel-3/OLCI POCd images in the Eastern Seas of China. (a) January. (b) February. (c) March. (d) April. (e) May.
(f) June. (g) July. (h) August. (i) September. (j) October. (k) November. (l) December.

environments [52], [67], [68]. This poses challenges in apply-
ing individual proxies for POC inversion in estuarine-coastal

environments characterized by diverse optical conditions and
particle compositions [12], [15].
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Fig. 15. 2020 monthly averaged Sentinel-3/OLCI total POC images in the Eastern Seas of China. (a) January. (b) February. (c) March. (d) April. (e) May.
(f) June. (g) July. (h) August. (i) September. (j) October. (k) November. (l) December.

To distinguish different particle contributions to POC and
calculate total POC in the highly complex optical environment
of these waters, we have developed a categorized POC esti-
mation method based on particle compositions. This algorithm
not only enhances the accuracy of POC estimation but also
provides a separation of POC contributions of phytoplankton
and organic detritus. Then, the algorithm was applied to
Sentinel-3/OLCI data in 2020; the calculation of monthly
POCphy, POCd, and total POC reveals significant spatiotem-
poral variations, contributing to a better understanding of the
carbon pool in the optically complex waters of the estuarine-
coastal-shelf sea waters.

Here, the algorithm proposed in this study, together with
widely employed POC inversion algorithms, were applied
to in situ Rrs(λ ) and compared with in situ POC measure-
ments (Fig. 16, Table IV). The blue-green ratio algorithm
(Stramski08recal [16], in Fig. 16) exhibits significant biases in
estimating POC in coastal waters, with a notable underestima-
tion of high POC samples, yielding R2 of 0.34, RMSE of 88.51
µg L−1, and MAPE of 51.39% (N = 60). This is possibly due
to the saturation of the blue and green band of Rrs, particu-
larly in highly turbid waters such as estuaries and nearshore
regions [69], which can lead to a severe underestimation of
POC. For the multivariate regression method (Le17recal [17],
in Fig. 16), the points are generally clustered around the
1:1 line. Overall, R2 is higher than that of Stramski08recal,
at 0.45. The performance of this algorithm in POC-rich waters
(>200 µg L−1) is closer to the 1:1 line when compared to
Wei19 and Stramski08recal, while in low POC regions, there

TABLE IV
ACCURACY STATISTICS OF THE DIFFERENT POC MODELS (IN THIS

STUDY, WEI ET AL. [13], LE ET AL. [17], AND STRAMSKI ET AL.
[16]). BASED ON THE INDEPENDENT VALIDATION DATASET. THE

NUMBER OF VALID IN SITU POC DATA IS 60

exhibits a noticeable underestimation. The water-classification-
based algorithm (Wei19 [13], in Fig. 16) is generally more
suitable for turbid and complex waters compared to Le17recal
and Stramski08recal, with an R2 of 0.67 and MAPE of 53.95%.
The overall underestimations of Chla, which is selected as the
proxy of the low-TSM waters, lead to underestimations on the
POC in low-TSM samples.

The algorithm developed in this study exhibited reasonable
performance, with an R2 value of 0.71, MAPE of 43.97%,
and RMSE of 16.57 µg L−1. It is observed that this method
tends to show relative overestimation in cases with low POC
levels. On one hand, this is due to some underestimation in
fitting lower POCphy content during the establishment from
phytoplankton OSM [Fig. 10(a)]. Further optimization of
coefficients and models is required, which can be achieved
by accumulating station data on phytoplankton-driven POC
in upcoming in situ observation plans. On the other hand,
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Fig. 16. Comparison between the POC algorithms (by Stramski et al. [16],
Le et al. [17], Wei et al. [13], and this study) and in situ POC measurements.
The yellow multiplication, green crosses, red triangle, and blue squares
represent the POC derived from Stramski08recal, Le17recal, Wei19, and this
study, respectively. The dotted gray lines represent the 1:1 line.

combining Figs. 9(b) and 12(c) reveal that there is underes-
timation in areas with low OSM. In waters with relatively
high levels of mineral particles, the underestimation of OSM,
therefore, results in the underestimation of POC. Another
factor is the assumption for the dominant particle types during
the development of POC and OSM, which may lead to poten-
tially incomplete separation of dominant particles. While such
assumptions and optical classifications are necessary in this
study, reasonable methods should be applied to collect in situ
data of phytoplankton carbon and organic detritus carbon for
the optimization of optical classification models in further
plans. This could include applying empirical relationships
that relate cell biovolume to phytoplankton carbon [70], [71],
separating living particles with flow-cytometric analysis [72],
[73], and employing 14C labeling cultivation [74]. Meanwhile,
the relationship between γ and OSM established is empirical
(see Fig. 9). It is worth noting that, theoretically, particle size
will also have an impact on γ . Although Qbbe was used to
minimize the influence of particle size in establishing the
POC contribution of each particle component, the in situ
measurements of Chla, particle size distribution (PSD), and
OSM in 2020 are provided in Supplement document Fig. S5
for readers’ reference. In this study, in situ data was used to
verify Sentinel-3/OLCI Rrs, TSM, and OSM. Because of the
lack of synchronous in situ POC data for the year 2020, the
comparison of satellite POC inversion results is lacking; thus,
it is necessary to collect the in situ POC data in the following
research plans and compare it with the satellite results.

Because the dataset used in primarily establishing this
model pertains to complex optical environments in estuarine,
coastal, and shelf seas, as well as the empirical analysis of
particle compositions and the selection of the red spectral
band, the applicability of this work to open ocean oligotrophic
waters will need to be assessed through in situ data collection
and analysis. Nevertheless, this work emphasizes the need for
compositional analysis in complex waters due to the improved
understanding of the relationship between particle composition
and optical properties, as well as the wide range of variability
in particle characteristics and optical properties. In this study,
the POC inversion based on the classification of particle types
can fundamentally separate the POC contributions of different
particles and also analyze the content of different particle

compositions and their contribution to POC. This approach has
the potential to be extended to global estuarine-coastal-shelf
sea waters characterized by turbid conditions and complex
particle compositions, thus offering a novel perspective for
analyzing POC contributions and conducting carbon pool
research.

B. Spatial Distribution of POC in Estuarine-Coastal-Shelf
Waters

In this section, the focus is on the spatiotemporal distribu-
tion of POCphy, POCd contributions, as well as total POC by
integrating the results with previous research. Spatiotemporal
distributions of POCphy and POCd in 2020 are shown in
Figs. 13 and 14.

In terms of spatial distribution, within the estuarine particle
front, particle flocculation weakens while salinity increases
from the estuary toward offshore, resulting in reduced light-
blocking effects, and these waters are rich in nutrients, leading
to higher POCphy levels in the spring, which can even trigger
algal blooms [75], [76], [77]. As moving seaward, nutrient
levels decrease and seawater salinity increases, leading to
a decrease in phytoplankton biomass that eventually stabi-
lizes [78]; however, in the estuaries of large rivers, within
their TMZ, and in the Subei Shoal, the high turbidity waters
inhibit the growth of phytoplankton. Consequently, POCphy
in this region is lower than that in the estuarine parti-
cle front, with a significant POC contribution from organic
detritus [76], [77], [79].

Regarding temporal distribution, during autumn (SON) and
winter (DJF), terrestrial organic detritus has a significant POC
contribution to the BS and nearshore waters, primarily due
to anthropogenic factors and the inflow of terrestrial organic
particles from the Yellow River [80], [81]. In spring (MAM)
and summer (JJA), the phytoplankton-typed POC from the
central Yellow-BS and offshore waters gradually increase,
becoming dominant [63], [80].

In summary, the results are consistent with previous in situ
research; furthermore, beyond the algorithmic improvements
in total POC retrieval compared to earlier research, these
results have the potential to be applied to long-term satellite
remote sensing data for assessing the spatiotemporal distribu-
tion of POC contributions from different particle components
in estuarine-coastal-shelf sea waters. This holds significant
potential for investigating the dynamic changes in coastal
particle composition and variations in local carbon pools.

VI. CONCLUSION

Understanding the contributions of different types and
sources of particles to the nearshore area is crucial for
comprehending the estuarine-coastal-shelf sea carbon cycle.
To achieve this, we proposed differentiating between organic
detritus and phytoplankton and estimating their contributions
to POC using optical properties. An extensive in situ dataset
representing various particle compositions and optical proper-
ties was collected, including data from highly turbid estuarine
water and shelf seawater. QAA algorithm for nearshore turbid
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TABLE V
MAIN PARAMETERS USED IN THIS STUDY AND THEIR BRIEF DESCRIPTIONS

waters was fined-tuned to calculate the particulate inherent
optical properties based on Rrs(λ ), including the bbp(λ )

with its spectral slope and aph(λ ) and aNAP(λ ). The tuned
QAA algorithm was validated using independent in situ
data, and it showed improved calculations for bbp(682) and
aph(λ )/aNAP(λ ), with R2 values of 0.88 and 0.44, respectively.
In addition, the SERT algorithm was recalibrated using the
extensive in situ data to estimate TSM, with an R2 of 0.91.

We developed the relationship between the OSM mass
proportion and bbp(λ ) slope γ obtained by QAA (R2

= 0.81),
to obtain OSM mass proportion. Then, POCd and POCphy were
estimated according to aph(λ )/aNAP(λ ) and OSM. It is indi-
cated that the proposed algorithm is effective and promising in
quantitatively classifying particle composition and accurately
estimating the POC contributions with in situ Rrs(λ ), with
R2 and RMSE values of 0.71 and 16.57 µg L−1, respec-
tively. This encourages the application of the algorithm to
Sentinel-3/OLCI estimating POCd and POCphy, OSM, and
finally assessing seasonal and spatial variability from space.
The comparison between remote sensing inversion and in situ
station distribution results revealed consistent spatial patterns.

ACKNOWLEDGMENT

The authors would like to express our sincere appreciation to
the two anonymous reviewers and the editor for their valuable
and constructive input in enhancing the quality of our work.
Author Contributions: Fang Shen provided project administra-
tion. Fang Shen and Mengyu Li conceptualized and designed
the study. Mengyu Li processed data and prepared and fig-
ures, tables. Mengyu Li, Fang Shen, and Emanuele Organelli
contributed to writing and revising the manuscript. Mengyu
Li and Wei Luo conducted field data sampling and labo-
ratory analyses. Renhu Li processed Sentinel-3/OLCI data.

Xuerong Sun analyzed absorption data. Xiaodao Wei prepared
historical data. All authors provided feedback and approved
the final version. The historical optical and biogeochemical
data from 2014 to 2015 are available at Wei et al. [13]
via http://doi.org/10.1029/2018jc014715. New dataset, figures
are available at http://doi.org/10.6084/m9.figshare.22822676.
Coastline data can be obtained from https://www.soest.hawaii.
edu/pwessel/gshhg, bathymetry maps dataset can be download
from https://www.ngdc.noaa.gov/mgg/global/relief/ETOPO1.

APPENDIX

The main parameters used in this study and their brief
descriptions are shown in Table V.
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