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• An integrated approach was proposed
to examine sources and hazardous
areas of heavy metals.
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• SGCS with FMDM pollution thresholds
was applied to determine hazardous
areas.
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Identifying quantitative sources and hazardous areas of heavy metals is a crucial issue for soil management. For
this purpose, an integrated approach composed of finite mixture distribution modeling (FMDM), positive matrix
factorization (PMF) and sequential Gaussian co-simulation (SGCS) was proposed. FMDMwas used to establish
background standards and pollution thresholds. PMF supported by FMDM background standards was applied
to estimate the source apportionment. Hazardous areas of single metals were delineated using SGCS with
FMDM pollution thresholds and uncertainty analysis, and overall hazardous areas were defined by the presence
of multiple metals. This integrated approach was applied to a dataset of seven metals as a case study. FMDM in-
dicated that the distributions of Cr, Cu, Ni, and Zn were fitted to two-dimensional mixture distributions,
representing a background distribution and a moderately polluted distribution. The distributions of Cd, Hg, and
Pb were composed of a three-component lognormal mixture distribution, corresponding to the background,
moderate, and high pollution distributions. Three sources were apportioned. Cr, Cu, Ni, and Zn were dominated
by parent materials. Parent materials contributed 52.6%, 45.8%, and 81.9% of Cd, Hg, and Pb concentrations, re-
spectively. Human emissions from coal combustion, industrial work and traffic had significant influences on
Hg, Cd, and Pb,with contributions of 49.8%, 26.9%, and 15.6%, respectively. Agricultural practiceswere exclusively
associated with 20.5% of Cd. Overall, hazardous areas exceeding moderate pollution thresholds covered 17.4% of
the total area, corresponding to urban areas and industrial sites, whereas overall hazardous areas above high pol-
lution thresholds were limited to 0.01% of the total area.
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1. Introduction
Heavy metals are well known because of their ecotoxicity and per-
sistence and are of great importance to soil environments (Alloway,
2013; Rodríguez Martin et al., 2015). Heavy metals in soils are con-
trolled by natural background levels and human inputs with complex
influencing mechanisms (Christensen et al., 2018). Natural background
levels of heavy metals in soils are mainly inherited from parent rocks.
Human activities that influence heavymetal contents include coal com-
bustion, traffic emissions, industrial manufacturing, mining, and agri-
cultural practices(Alloway, 2013), and the impact of anthropogenic
inputs commonly exceeds natural backgroundwith enhanced urbaniza-
tion and industrialization. Source apportionment is essential for suc-
cessfully regulating pollutant inputs, and an adequate understanding
of heavy metals background levels facilitates establishing an appropri-
ate standard for soil remediation (Ha et al., 2014; Hu and Cheng,
2013; Li et al., 2015). This combination of natural factors and human ac-
tivity also results in complex spatial variability (Lv et al., 2013). The
areas where heavy metal contents exceed the given thresholds are de-
fined as hazardous areas in this work. Delineating hazardous areas is
more valuable for decision-makers for effective soil environment man-
agement than mapping spatial variability (Lin et al., 2016).

Receptor models such as absolute principal component score/multi-
ple linear regression (APCS/MLR), positive matrix factorization (PMF),
and UNMIX do not depend on prior knowledge of source profiles and
have been primarily applied for the identification and apportionment
of heavy metal sources (Chen and Lu, 2018; Guan et al., 2018; Perrone
et al., 2018; Sofowote et al., 2008). However, the receptor model, as
pure multivariate statistical model, may produce biases and uncer-
tainties in the source apportionment. Moreover, the factors from recep-
tor model were identified as different sources by factor loadings of
various variables based on the previous knowledge of researchers,
whichmay result in the subjectivity of factor interpretation. The limita-
tions of receptor model could be conducted by comparing the results
from multiple models. Finite mixture distribution modeling (FMDM)
can build a mixture distribution consisting of several component distri-
butions of heavy metals, and each component represents natural back-
ground or human activity distributions (Lin et al., 2010; Portier, 2001;
Yang and Chang, 2005). A baseline approach and multivariate analysis
are typically used to identify the soil background levels (Albanese
et al., 2007; Reimann and de Caritat, 2017; Reimann et al., 2005; Yang
and Chang, 2006; Yotova et al., 2018). However, due to current human
disturbances of the soil environment, it is difficult to acquire sampling
sites that truly represent background soil levels (Yang and Chang,
2006). FMDM can effectively overcome the difficulties associated with
defining background sites and has been successfully used to establish
background standards and pollution thresholds of heavy metals (Hao
et al., 2016; Hu and Cheng, 2013; Lin et al., 2010; Zhi et al., 2016;
Zhong et al., 2014). The background standards derived from FMDM
can be used to compare to the factor profiles from receptor models;
this process facilitates demarcation of the source represented by natural
factors and verifies the receptor model results. Zhi et al. (2016) first
used FMDM and PMF to apportion the sources of soil Cd in croplands
of Eastern China, but PMF failed to obtain a successful source apportion-
ment. In this study, with the support of FMDM, we attempted to apply
PMF to estimate source apportionment of heavy metals in soils.

Geostatistical methods including kriging and stochastic simulation
provide effective tools to estimate or simulate spatial distributions of
heavy metals (Juang et al., 2004; Lv et al., 2013; Rodríguez Martin and
Nanos, 2016) and to determine hazardous areas (Chu et al., 2010;
Juang and Lee, 1998). Lin et al. (2010), Zhong et al. (2014), and Hao
et al. (2016) combined indicator kriging and FMDM to map the spatial
patterns of heavy metal pollution in soil. Conditional simulation tech-
niques such as sequential Gaussian simulation (SGS) and sequential in-
dicator simulation (SIS) can be used to avoid the smooth effect of kriged
estimation and examine the uncertainty of simulated concentrations
(Goovaerts, 1997; Mueller and Ferreira, 2012; Webster and Oliver,
2007). However, conditional simulation requires more random access
memory (RAM) and a faster processor than kriging (Emery and Silva,
2009; Yao et al., 2013). With the rapid development of computer hard-
ware, conditional simulation hasmore potential in environmental stud-
ies. The univariate geostatistical simulation tends to ignore spatial
interrelation among various variables and may be unsuitable for gener-
ating spatial distributions. Multivariate geostatistical simulations with a
linearmodel of coregionalization fitting (LMC) could lead to a better un-
derstanding of spatial variability than univariate geostatistical simula-
tion (Boluwade and Madramootoo, 2015; Franco et al., 2006; Liu et al.,
2013; Suhrabian and Tercan, 2014). In this study, the spatial probability
of pollution was mapped using sequential Gaussian co-simulation
(SGCS) with pollution thresholds derived from FMDM, and hazardous
areas were determined through minimizing spatial uncertainty.

Together, an integrated approachwas proposed to identify quantita-
tive sources and hazardous areas of heavy metals in soils and contains
three steps: (1) to explore background standards and pollution thresh-
olds using FMDM, (2) to estimate quantitative source apportionment
using PMF supported by FMDMbackground standards, and (3) to deter-
mine hazardous areas using SGCS with the FMDM pollution thresholds
and uncertainty analysis. The integrated approach was applied to a
heavy metals dataset (Cd, Cr, Cu, Hg, Ni, Pb, and Zn concentrations of
209 surface soil samples) as a case study.
2. Materials and methods

2.1. Sampling and chemical analysis

Boshan, a typical industrial city in eastern China with a total area of
698.2 km2, was selected as the case study area (Fig. S1). There are three
industries in this area, ceramics, coal-fired power, and metal casting;
most of this activity is distributed in and around the urban area
(Fig. S2). Boshan is one of the most important ceramics production
bases in China and contains significant reserves of coal. The intensive in-
dustries inevitably result in the accumulation of heavy metals in soils.
Furthermore, the rapid industrialization and urbanization in future de-
cades will aggravate this accumulation trend. The elevation ranges
from 130 to 1100 m, decreasing in elevation from the south to the
north (Fig. S2). The soil parent materials consist of dolomite, limestone,
mudstone, sandstone, granite, and hornblendite as well as alluvium and
proluvium (Fig. S2).

The study area was divided into 2 km× 2 km cells, and a total of 209
sampling sites were designated at the center of each cell. During field
sampling, an alternative location close to predesigned siteswas selected
to obtain a natural soil in case the soils were unavailable at the original
location. The coordinates of the sampling sites were recorded using a
hand-held GPS. At each sampling site, four to six subsamples of topsoils
(0–20 cm deep) within a 100 m radius were collected and mixed thor-
oughly in a polyethylene bag. The locations of the sampling sites are in-
dicated in Fig. S1. Soil samples were air-dried and ground to b0.2 mm
powder. After digestion of the samples, Cr, Ni, Pb and Zn concentrations
were analyzed using a flame atomic absorption spectrophotometer
(240 AA Agilent, USA), Cd contents were determined using a graphite
furnace atomic absorption spectrophotometer (AA-7000 Shimadzu,
Japan), andHg concentrationswere determinedwith an atomic fluores-
cence spectrometer (AFS230E Haiguang Analytical Instrument Co., Bei-
jing, China). For details on themeasurements, please refer to the related
literature (Lu, 2000; Lv et al., 2014; Lv et al., 2013). A standard reference
material, GSS-1 soil, obtained from the Center for National Standard
ReferenceMaterial of China, was used for quality control. The recoveries
of all seven metals were 100 ± 10%. Analytical reagent blanks were
used in the sample preparation and analytical processes. All measure-
ments were conducted in triplicate, and standard deviations were
within ±5% of the mean.
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2.2. Methodology

2.2.1. FMDM
The observed concentrations of heavy metals are treated as a mix-

ture distribution model composed of k components (McLachlan and
Peel, 2000; Portier, 2001):

f zð Þ ¼
Xk
i¼1

πi f i zð Þ ð1Þ

Xk
i¼1

πi ¼ 1; 0≤πi≤1; ð2Þ

where fi(z) represents a probability density function of random vari-
ables and πi is the mixed weights of fi(z) ranging from 0 to 1.

fi(z) can be any distribution consisting of natural and contamination
distributions in heavy metal data. The population of background and
contaminated areas would have a right-skewed distribution; thus, the
lognormal distribution is commonly recommended in FMDM (Hao
et al., 2016; Lin et al., 2010; Zhi et al., 2016). The geometric mean
value of background log-normal distributions is the background of
heavy metals (Lin et al., 2010; Portier, 2001). In this study, fi(z) was
used as a lognormal distribution.

f i zjμ;σ2� � ¼ 1ffiffiffiffiffiffi
2π

p
σz

e−
ln z−μð Þ2
2σ2 ; zN0 ð3Þ

where μ and σ are the mean and standard deviation of fi(z|μ,σ2),
respectively.

The parameters μi, σi, and πi are estimated by using the maximum
likelihood method with a combination of a Newton-type algorithm
and an EM algorithm.

The hypothesisH0 is proposed that the estimatedmodel is consistent
with the observed distribution, and Chi-square test is used to examine
the H0 (Portier, 2001).

The cutoff values x0 representing pollution thresholds are deter-
mined as follows:

πi

Z þ∞

x0
f i zð Þdz ¼ πiþ1

Z x0

−∞
f iþ1 zð Þdz ð4Þ

FMDM was conducted using the Mixdist package (Macdonald and
Schwierz, 2018) in the R 3.3.2 software (R Development Core Team).

2.2.2. PMF
PMF is a multivariate factor analysis tool that is used to solve the

chemical mass balance model and was utilized using the US-EPA PMF
5.0 program (U.S. Environmental Protection Agency, 2014). The initial
data matrix X with the order of m × n can be expressed as:

X ¼ GF þ E ð5Þ

where G (m × p) is the matrix of the factor contribution, F (p × n) is the
matrix of the factor profile, and E (m × n) is the residual error matrix.

E can be written as:

eij ¼
Xp
k¼1

gik f kj−xij ð6Þ

where i represents elements from 1 to m, j represents elements from 1
to n, and k represents the source from 1 to p.

Factor contributions and profiles are obtained byminimizing the ob-
jective function Q under the constraint of non-negative contributions
(Paatero, 1997), which is solved by Multilinear engine-2 (ME-2). The
uncertainty is calculated based on the element-specific method detec-
tion limit (MDL) and error percent measured by standard reference
materials (U.S. Environmental Protection Agency, 2014). In this study,
three factors were derived from a run with Q (robust) of 8983.

2.2.3. SGCS
First, Gaussian anamorphosis is used to standardize the original

variable into a Gaussian-shaped variable (Lv et al., 2013). LMC fitting
is performed on the Gaussian variables. In this study, LMC fitting of
seven heavy metals was modeled as the sum of the nugget effect, a
spherical structure with a range of 8.2 km, and a Gaussian structure
with a range of 42.2 km. The mean error (ME) and the mean of the
squared standardized errors (MSSE) calculated from cross validation
(Wackernagel, 2003) were close to 0 and 1, ranging from 0.0003 to
0.0007 and 0.981 to 1.195, which suggested that the goodness of fit of
the LMC was generally satisfactory.

γij hð Þ ¼ b0ij þ b1ij
3
2

h
8:2

� �
−

1
2

h
8:2

� �� �3
" #

þ b2ij 1−e − h
42:2ð Þ2

� �
for0bh≤42:2 km ð7Þ

γij hð Þ ¼ b0ij þ b1ij þ b2ij forhN42:2 km ð8Þ

where bij0 is the nugget effect, bij1 is the sill of the spherical structure, and
bij
2 is the sill of the Gaussian structure.
Based on the LMC fitting, the SGCS algorithm can be performed ac-

cording to Chilès and Delfiner (1999). When the simulation is com-
pleted, the simulated normal results are back-transformed to the
simulated values in their original units. The SGCS was performed 1000
times to obtain 1000 realizations of seven metals. Spatial distributions
of heavy metals were simulated 1000 times by SGCS at the 100 m
mesh nodes of a 2D grid, using an optimum number of 10 samples
within a neighborhood circle with a 5000 m radius. The single-
location uncertainty (Goovaerts, 1997; Juang et al., 2004) and spatial
(multi-location) uncertainty (Juang et al., 2004) were used to deter-
mine the reliable hazardous areas of single metals exceeding the
FMDM thresholds, and the overall hazardous areas of multiple seven
metals were defined as the union of hazardous areas for multiple
metals. For detailed information, please see the supplementary mate-
rial. All steps of the SGCSwere carried out by using ISATIS 2013 software
(Geovariances Inc.).

3. Results

3.1. FMDM fitting of heavy metals

Descriptive statistics for the heavy metal distributions of Boshan
were summarized in Table 1. The mean concentrations of Cd, Cr, Cu,
Hg, Ni, Pb, and Zn were 0.21, 74.9, 33.4, 0.067, 37.0, 33.6 and
87.3 mg/kg, respectively. All data were positively skewed for seven
metals, indicating that there were outliers. The Kolmogorov-Smirnov
test suggested that all seven heavy metal concentrations were non-
normal. Level II of the Environmental Quality Standard for Soils
(EQSS) of China refers to the thresholdmaintaining agricultural produc-
tion and human health (State Environmental Protection Administration
of China, 1997). Cd appeared to be the most widespread metal exceed-
ing level II of the EQSSwith 25 samples (12.0%). There weremerely 6, 3,
2, 2, and 1 samples containing Ni, Cr, Hg, Cu, and Zn higher than level II
of the EQSS, whereas Pb in all samples was below level II of the EQSS.

The mixture distributions were commonly fitted by a two- and
three-component lognormal mixture distribution. The two-
component lognormal mixture distribution comprises the background
distribution and moderately polluted distribution, whereas the three-
componentmixture distribution consists of the background distribution
mixed with moderate and high pollution distributions. The number of
componentswas determined by examining the characteristics observed



Table 1
Descriptive statistics of heavy metals in soils (n = 209, unit in mg/kg).

Min Max Median Mean SD Skewness Kurtosis KS
test P
value

Level
II of
EQSS

Cd 0.08 1.43 0.20 0.21 0.12 5.709 55.886 0.001 0.3
Cr 22.0 733.5 72.0 74.9 51.06 10.852 135.861 0.000 200
Cu 10.6 117.6 32.0 33.4 12.88 2.449 12.111 0.004 100
Hg 0.010 0.750 0.048 0.067 0.07 5.511 41.635 0.000 0.5
Ni 7.9 568.8 35.5 37.0 37.94 13.364 187.939 0.000 50
Pb 17.8 66.9 31.6 33.6 8.12 1.398 2.605 0.001 300
Zn 43.0 352.1 83.8 87.3 25.21 5.966 58.522 0.000 250

Min: minimum, Max: maximum, SD: standard deviation, KS: Kolmogorov-Smirnov test.
EQSS: Environmental Quality Standard for Soils (GB15618-1995).
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in the distribution of heavy metals. For example, if the observed distri-
bution has two peaks, it should be fittedwith two-dimensional distribu-
tions. In this study, the distributions of Cr, Cu, Ni, and Zn were modeled
using two-dimension lognormalmixture distributions, and thedistribu-
tions of Cd, Hg, and Pb were fitted to three-component lognormal mix-
ture distributions (Fig. 1). P-values of the fitted mixture modeling of all
seven heavy metals were above 0.05, suggesting that these mixture
models could accurately describe the observed distributions with the
suitable number of components (Table 2).

The geometric mean value of background log-normal distributions
of Cd, Cr, Cu, Hg, Ni, Pb, and Zn calculated from FMDM were 0.13, 68.3,
30.9, 0.030, 33.1, 28.8, and 82.6 mg/kg, respectively. The respective
Fig. 1. FMDM fitting of Cd (a), Cr (b), Cu (c), Hg (d), Ni (e), Pb (f), and Zn (g) in soils. Cutoff va
cutoff values of moderate pollution for Cd, Cr, Cu, Hg, Pb, and Zn were
0.16, 129.8, 72.2, 0.044, 77.6, 39.2, and 122.4 mg/kg, whereas the re-
spective cutoff values of for Cd, Hg, and Pb high pollution were 0.35,
0.109, and 62.4 mg/kg.

The weight values of the background distribution of Cr, Cu, Ni, and
Zn were 0.986, 0.985, 0.991, and 0.954, indicating that these metals
mainly originated from natural sources. For Cd and Hg, 64.4% and
42.7% of surface soils suffered from moderate pollution due to human
inputs, which were more widespread than the other five metals. The
contribution of the background distribution to soil Pb was 83.7% for
soils affected bynatural sources, but 15.4% of soilswith Pb showedmod-
erate pollution due to human activities. For Hg, 12.0% of soils showed
high pollution, and the contribution of high pollution distribution to
soil Cd and Pb was limited to only 1% and 0.9%. Overall, soil pollution
by Cd, Pb, and Hg from anthropogenic sources was more widespread
than that by the other four metals.

3.2. PMF modeling of heavy metals

The parameters of PMF modeling with three factors are shown in
Table 3. Fig. 2 shows the percentage contribution of three factors, and
Fig. S3 indicates the fractional concentrations. The ratios of the pre-
dicted to observed values were close to 1, and R2 varied between 0.71
and 0.93, indicating an accurate fit of the PMF modeling. All heavy
metals exceptHg had the highest concentration in factor 1. In particular,
the Cr, Cu, Ni, and Zn concentrations were exclusively dominated by
lues (unit in mg/kg), obtained by solving Eq. (4), are indicated in vertical black dot lines.



Table 2
The parameters and the goodness of FMDM fitting and cutoff values.

Group Pi Mu Sigma Cutoff Df χ2 P-values

Cd 3 0.346 0.13 0.03 0.16 104 103.43 0.50
0.644 0.24 0.07 0.35
0.010 1.49 0.07

Cr 2 0.986 70.1 16.05 129.8 27 134.34 0.14
0.014 430.8 98.59

Cu 2 0.985 32.5 10.57 72.2 33 67.81 0.07
0.015 94.7 30.84

Hg 3 0.453 0.032 0.01 0.044 140 63.22 1.00
0.427 0.067 0.02 0.109
0.120 0.151 0.05

Ni 2 0.991 34.4 9.67 77.6 14 127.02 0.12
0.009 112.4 31.58

Pb 3 0.837 31.0 4.91 39.2 44 53.42 0.16
0.154 46.1 7.30 62.4
0.009 66.5 10.53

Zn 2 0.954 83.7 13.95 122.4 28 36.61 0.13
0.046 143.6 23.91

Pi:mixedproportions,Mu:means, Sigma: standarddeviations, Df: degrees of freedom, χ2:
Chi-square goodness-of-fit statistic.
If P-value is lower than 0.05, reject the hypothesis H0 that the estimated model is consis-
tent with the observed distribution.

Fig. 2. The source contributions (unit in %) of three factors to seven heavy metals derived
from PMF. Factor 1: Natural source, Factor 2: coals combustions, industrial and traffic
emissions, Factor 3: agricultural practices.
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factor 1, with contributions of 97.4%, 88.9%, 95.3%, and 90.5%. Factor 1
also contributed to 81.9% and 52.6% of the variations in Pb and Cd and
was the main sources of these metals. Combined with the results of
FMDM, factor 1 can be ascribed to a lithogenic source. Factor 2 contrib-
uted 49.8%, 26.9%, and 15.6% of Hg, Cd, and Pb, respectively, and may
represent coal combustion, industrial emissions, and traffic emissions
due to their widespread occurrence derived from FMDM. Factor 3 was
exclusively associated with 20.5% of Cd concentrations, and contributed
b6% to the other six heavy metals. Agricultural practice seemed domi-
nate this isolated factor.

3.3. SGCS of heavy metals

Table 4 shows the detailed parameters of LMC fitting. The Gaussian
structure was the main component for each heavy metal, followed by
the nugget effect and spherical structure. The probabilities of seven
metals exceedingmoderate and high pollution thresholds are indicated
in Fig. 3, and themean concentrations of seven heavymetals in 1000 re-
alizations are illustrated Fig. S4. The probabilities exceedingmoderately
polluted cutoffs for Cd, Hg, and Pb showed similar spatial patterns
(Fig. 3a, d, and f), and their common hotspots are located at the central
part of the study area corresponding to urban areas with a decreasing
trend from the center to periphery. Few areas for Cr, Cu, Ni, and Zn
were presented in the high probability zone above moderate pollution
cutoffs (Fig. 3b, c, e, and g). Hg exhibited some high probability values
exceedinghigh pollution cutoffs (Fig. 3i), but high probabilitywas rarely
found for Cd and Pb (Fig. 3h, and j). It is apparent that spatial variations
in Cd, Hg, and Pb are affected by human activities.

Spatial uncertainty was used to assess the reliability of the obtained
hazardous areas that exceeded pollution thresholds. Table S1 suggests
that the joint probability (Pj) increased with the increasing critical
Table 3
The validation and results of PMF modeling.

Model validation Sou

Predicted Observed Predicted/observed R2 Fact

Cd 0.21 0.21 1.00 0.86 0.11
Cr 70.0 74.9 0.93 0.71 68.2
Cu 34.3 33.4 1.02 0.74 30.5
Hg 0.063 0.067 0.95 0.88 0.02
Ni 33.8 37.0 0.91 0.85 32.2
Pb 33.6 33.6 1.00 0.93 27.5
Zn 87.3 87.3 1.00 0.81 79.0
probability (P). With the same critical probability, hazardous areas aris-
ing fromhigh pollution thresholds tended to have greater joint probabil-
ity than those from moderate pollution thresholds. The Pj values with
moderate pollution thresholds were N0.8 with P = 0.95, and the Pj
values with high pollution thresholds were N0.85 with P= 0.95. There-
fore, the critical probability P= 0.95 was sufficient to generate the reli-
able joint probability exceeding moderate pollution and high pollution
thresholds and was adopted to determine confidential hazardous areas.

Hazardous areas of heavymetals exceeding FMDMpollution thresh-
olds are indicated in Fig. S5. Approximately 16.4% and 11.5% of the total
areas for Cd and Hgwere identified as hazardous areas exceedingmod-
erate pollution thresholds, consistentwith the urban area and industrial
sites (Figs. S5a and d, S2), indicating significant human inputs. b1% of
the areas for Cr, Cu, Ni, Pb and Zn were above the moderate pollution
thresholds (Fig. S5b, c, e, f, and g). Fig. 4 illustrates the overall hazardous
areas ofmultiple heavymetals. 17.4% of the total areaswere classified as
overall hazardous areas that exceeded the moderate pollution thresh-
olds (Fig. 4a). The hazardous areas for Cd, Hg, and Pb above high pollu-
tion thresholds had areas of 10, 28, and 1 hm2 andwere highly localized,
corresponding to individual data points or small groups of points
(Fig. S5h, i, and j). In total, an area of 33 hm2 suffered from hazardous
risk resulting from high pollution (Fig. 4b).

4. Discussion

4.1. Comparison of FMDM results with regional background levels and na-
tional thresholds

The background of all seven heavymetals derived from FMDMwere
higher than the corresponding soil background levels of the Shandong
Province (0.07 mg/kg for Cd, 64.3 mg/kg for Cr, 22.3 mg/kg for Cu,
rce profiles (mg/kg) Source contribution (%)

or 1 Factor 2 Factor 3 Factor 1 Factor 2 Factor 3

0.06 0.04 52.6 26.9 20.5
1.8 0.0 97.4 2.6 0.0
1.8 2.0 88.9 5.3 5.8

9 0.032 0.003 45.8 49.8 4.4
0.2 1.3 95.3 0.7 4.0
5.2 0.9 81.9 15.6 2.6
5.5 2.8 90.5 6.3 3.2



Table 4
The parameters of LMC fitting of seven heavy metals.

Model structure Nugget Percentage of Nugget Sill1 Percentage of Sill1 Sill2 Percentage of Sill2

Cd Nugget + Sill1 ∗ Sph(8217) + Sill2 ∗ Gau(42208) 0.317 15.6 0.100 4.9 1.612 79.5
Cr Nugget + Sill1 ∗ Sph(8217) + Sill2 ∗ Gau(42208) 0.389 32.8 0.345 29.1 0.452 38.2
Cu Nugget + Sill1 ∗ Sph(8217) + Sill2 ∗ Gau(42208) 0.355 22.1 0.190 11.9 1.059 66.0
Hg Nugget + Sill1 ∗ Sph(8217) + Sill2 ∗ Gau(42208) 0.346 17.7 0.019 1.0 1.586 81.3
Ni Nugget + Sill1 ∗ Sph(8217) + Sill2 ∗ Gau(42208) 0.436 26.1 0.278 16.7 0.955 57.2
Pb Nugget + Sill1 ∗ Sph(8217) + Sill2 ∗ Gau(42208) 0.448 26.0 0.339 19.7 0.936 54.3
Zn Nugget + Sill1 ∗ Sph(8217) + Sill2 ∗ Gau(42208) 0.486 27.0 0.198 11.0 1.115 62.0

Sph: spherical structure, Gau: Gaussian structure.

Fig. 3. Probability maps of seven heavymetals exceeding FMDMpollution thresholds. a) Cd, b) Cr, c) Cu, d) Hg, e) Ni, f) Pb, and g) Zn show the probability maps abovemoderate pollution
cutoff, and h) Cd, i) Hg, and j) Pb are the probability maps above high pollution cutoff.
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Fig. 4.Overall hazardous areas exceeding the FMDMpollution thresholds. Hazardous areas are indicated in red zones. a) For overall hazardous areas of Cd, Cr, Cu, Hg, Ni, Pb, and Zn above
moderate cutoff values. b) For overall hazardous areas of Cd, Hg, and Pb exceeding high pollution cutoffs. (For interpretation of the references to color in this figure legend, the reader is
referred to the web version of this article.)
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0.016 mg/kg for Hg, 24.4 mg/kg for Ni, 24.5 mg/kg for Pb, and
60.9 mg/kg for Zn) (China National Environmental Monitoring Center,
1990). The high background at Boshan may be attributed to the high
percentage of carbonate rocks and mudstone in the parent materials
there. Commonly, soils that originate from carbonate rocks and mud-
stone have higher heavy metals contents than soils that originate from
granite, sandstone and alluvium (China National Environmental Moni-
toring Center, 1990).

The moderately contaminated cutoff values of all sevenmetals were
lower than level II of EQSS. The cutoff values of high pollution for Cd
were slightly higher than level II of EQSS, whereas the cutoff values of
high pollution for Hg and Pb remained lower than level II of EQSS. It
could be suggested that pollution thresholds of Boshan calculated by
FMDM were stricter than national thresholds. Level II of EQSS repre-
sents themaximumpermissible concentration of heavymetals tomain-
tain agricultural production and human health for soils in China. The
FMDM cutoffs, calculated from the statistical characteristics of heavy
metal concentrations in the study area, could indicate local contamina-
tion thresholds. In particular, some regions in developing counties such
as Boshan will still experience rapid industrialization and urbanization
in future decades, which inevitably leads to the continuous and severe
accumulation of heavy metals in soils. The level II of EQSS, as the last
line of defense for the soil environment and human health, was
1.5–10 times that of the respective background levels of heavy metals
in Boshan. It can be difficult to detect the pollution levels above back-
ground using level II of EQSS. Therefore, the thresholds associated
with heavy metal pollution assessments should be sensitive and strict
in order to regulate the human activities and to prevent the rapid dete-
rioration of the soil environment. Obviously, the FMDM cutoffs could
provide earlier warning indicators for soil pollution than the level II of
EQSS. Previous studies also compared the FMDMcutoffswith regulation
thresholds, and their differences varied locally. Lin et al. (2010) found
that the FMDM cut-off values for Cr, Cu and Ni in Chunghua Country,
Taiwan were roughly same as the regulatory thresholds. Zhong et al.
(2014) reported that the cutoff values for high Cd and As contamination
were close to national thresholds, but the cutoff values for high Pb and
Hg pollution were less than half of their respective national thresholds.
The FMDM cutoff values of As, Cd, Cu, Hg, and Pb in Changchun were
found to be less than national thresholds (Hao et al., 2016).

4.2. Source apportionment of heavy metals

4.2.1. Source interpretation of factor 1
Factor 1 produced the dominant contributions of Cr, Cu, Ni, and Zn

and significant influences on Cd, Pb, and Hg. The respective
contributions of factor 1 to Cd, Cr, Cu, Hg, Ni, Pb, and Zn by PMF were
0.11, 68.2, 30.5, 0.029, 32.2, 27.5, and 79.0 mg/kg (Table 3) and were
close to the background standards derived from FMDM (Table 2), indi-
cating that factor 1 represented a strong lithogenic source. Because the
concentrations and correlations of heavy metals may vary in different
parent materials, the grouping feature derived from PMF could be ex-
plained by the mechanism of ionic substitution. For the seven heavy
metals in this work, the radii of Cr, Cu, Ni, and Zn are similar, and ionic
substitution is commonly observed in minerals (Alloway, 2013; Xu
and Tao, 2004). The probability of ionic substitution decreases as radii
increase from the aforementioned four metals to Cd, Hg and Pb (Xu
and Tao, 2004). In addition, the FMDM illustrated that N95% of soils for
Cr, Cu, Ni, and Zn, 83.7% for Pb, 45.3% for Hg, and 34.6% for Cd were
below the background distribution. The spatial distributions of Cr, Cu,
Ni, and Zn included very small areas with high probability exceeding
moderately polluted thresholds, confirming their low human inputs;
Cd, Hg, and Pb exhibited some areas with low pollution probabilities
(Fig. 3).

Cr and Ni are commonly considered to be the least polluted in China
(Jiang et al., 2017; Lv et al., 2015b), and human inputs of these two
metals from fertilizers and manure are lower than their background
contents in soils (Alloway, 2013). If other metals are classified into a
group with Cr and Ni, among the works that use multivariate analysis
to analyze the sources of metals, they will be considered to be affected
by natural sources (Cai et al., 2015; Liu et al., 2016; Lu et al., 2017; Lv
and Yu, 2018; Lv et al., 2013; Nanos and Rodríguez Martin, 2012).
Therefore, it could be confirmed that factor 1 indicates natural sources.

4.2.2. Source interpretation of factor 2
Factor 2 was associated with Hg, Cd and Pb. FMDM suggested that

these three metals exhibited more widespread pollution than the
other four metals. The high probability values of Hg, Cd and Pb that
exceeded moderately polluted thresholds corresponded to urban areas
with dense industrial factories and traffic lines (Figs. 3, and S2). The an-
thropic influences on Hg, Cd, and Pb have been clearly demonstrated in
previous studies (Franco-Uria et al., 2009; Lv et al., 2013; Lv et al.,
2015a). It can be inferred that factor 2may represent human emissions.

There were three coal-fired power plants with a total capacity of
1000 MW and several coal-fired factories (ceramics and metal casting)
in Boshan. The coal-fired power plants and factories were equipped
with electrostatic precipitators (ESP) and wet flue gas desulfurization
(WFGD). Coal combustion is commonly regarded as themost important
source of Hg in China (Wu et al., 2016), with an average Hg concentra-
tion of 0.17 mg/kg in coals (Zhang et al., 2012). Most Hg was output to
the fluxing gas in the combustion process due to its high volatility
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(Vejahati et al., 2010). The species of Hg in fluxing gas are composed of
gaseous elementary Hg (Hg0), gaseous oxidized Hg (Hg2+), and
particle-bound Hg. Particle-bound Hg and gaseous Hg2+ can be effec-
tively captured by ESP and WFGD, but the water-insoluble Hg0 is resis-
tant to capture by scrubbers (Srivastava et al., 2006). More than one-
half of Hg can escape to the atmosphere after the retaining of scrubbers,
and can fall into soils through dry andwet deposition. The removal pro-
portion of Cr, Cd, Ni, Cu, Zn, and Pb by ESP+WFGDwashigher than 99%
in China (Deng et al., 2014; Zhao et al., 2017). Therefore, it can be con-
cluded that coal combustion contributed a much higher proportion of
Hg than other heavy metals.

PbO and CdSSe are widely used as components of pigment in ce-
ramics manufacturing, and Cd and Pb concentrations in ceramics
reach 5.27 and 1161mg/kg (Barros et al., 2007; Lin et al., 2015). The ce-
ramics industry should be responsible for soil Cd and Pb pollution via
the emissions of exhaust gas and wastewater. Pb, Cd, and Hg were
also related to metal casting factories, and they entered into the soils
by atmosphere deposition of fluxing gas, the leaching of industrial resi-
due, andwastewater discharge. Pb could be associatedwith traffic emis-
sions. Though tetraethyl lead has been banned in China since 2000,
the historical Pb emissions from vehicles still exists in the soils there
(Lv et al., 2015a).

The local human activities of Boshan contributed much higher pro-
portions of Hg, Cd and Pb than other heavymetals, which are consistent
with the results of high loadings of Hg, Cd and Pb, and relatively low
loadings of the other four heavy metals in factor 2. The studies by
Rodríguez Martín et al. (2006) in the Ebro basin, Lv and Yu (2018) in
Gaoqing, Lu et al. (2012) in Shunyi, and Hu et al. (2018) on an alluvial
island of the Yangtze River reported that Hg, Cd and Pbwere influenced
by various human inputs including industrial and traffic emissions and
agricultural practices. Consequently, we confirmed that factor 2 was re-
lated to coal combustions, industrial emissions, and traffic emissions.

4.2.3. Source interpretation of factor 3
Factor 3 explained 20.5% of Cd concentration and b6% of other metal

contents in PMF modeling. Cd is commonly an indicator of the applica-
tion of chemical fertilizers (Rodríguez Martín et al., 2013), and agricul-
tural practices accounted for 63% of the total annual inventory of Cd in
agricultural soils in China (Luo et al., 2009). Farmers must apply exces-
sive chemical fertilizer to maintain and improve soil fertility due to thin
soils and serious soil intrusion across most of the study area. The appli-
cation of chemical fertilizers of Boshan in 2016 was 1210 kg/hm2, and
the respective proportions of compound, nitrate, phosphate, potassium
fertilizerswere 48.3%, 33.1%, 12.0%, and 6.6%. Cd concentrations of phos-
phate and compound fertilizers in China are 0.6 and 0.18 mg/kg (Lu
et al., 1992), much higher than the background values in the soils of
Boshan. The Cd contents in nitrate and potassium fertilizers and Cu,
Hg, Pb and Zn in all four fertilizers are much lower than their back-
ground values in soils. Therefore, the application of chemical fertilizers
could elevate Cd levels more significantly than other metals, which are
consistent with the prominent loading of Cd in factor 3. Cai et al.
(2015) reported that the group of Cd and As could be defined as an an-
thropogenic component related to agronomic practices. Zhang et al.
(2016) found that Cdwas grouped in an isolated group andmainly orig-
inated from the application of phosphate fertilizers. Therefore, it can be
concluded that factor 3 represented agricultural practices.

4.3. Delineating hazardous areas of heavy metals

SGCSwith LMC, involving the spatial relationship of heavy metals in
soils, could simulate the spatial distributions of heavy metals in given
realizations and to explore spatial uncertainty in their concentrations.
Critical probability is crucial for delineating hazardous areas. Previous
studies found that critical probabilities of 0.7, 0.9, 0.95, 0.98, and 0.75
could generate a reliable joint probability (Juang et al., 2004; Kerry
et al., 2010; Lin et al., 2016; Zhao et al., 2007). In this study, the critical
probability with moderate and high pollution thresholds is consistent
with Zhao et al. (2007).

The hazardous areas exceeding moderate pollution thresholds were
contiguous for Cd and Hg and were localized for Pb, concentrated
around urban areas and industrial sites (Figs. S5a, d, f, and S2). Cr, Cu,
Ni, and Zn had few hazardous areas above moderate pollution thresh-
olds, which showed no apparent relationship with urban areas and in-
dustrial sites and did not reflect significant human inputs (Figs. S5f,
and S2). There were no significant hazardous areas for Cd and Pb
above the high pollution thresholds (Fig. S5h, j). Only some localized
areas of Hg above high pollution thresholds were found, which could
be attributed to point pollution from industrial emissions (Fig. S5i). By
comparing the single metals and overall hazardous areas, it could be il-
lustrated that the central part of study area was above the moderate
pollution thresholds arising fromCd, Hg, and Pb,where several localized
areas of high pollution risks dominated byHgwere also revealed. There-
fore, it can be concluded that the spatial distributions of Cd, Hg, and Pb
are significantly influenced by human activities, and these three heavy
metals must be paid more attention. The determination of hazardous
areas is similar to previous studies. Zhong et al. (2014) applied indicator
kriging to estimate the probabilities of heavy metals exceeding the
threshold values calculated from FMDM in a metalliferous industrial
district of China and found that Cd, Hg, and Pb were associated with
the atmospheric transport and deposition from human emissions. The
work of Hao et al. (2016) in Changchun reported that the high probabil-
ities of Cd andHg exceeding the FMDM cutoff were located in industrial
regions and the urban area.

In summary, three sources and hazardous areas of heavy metals
were determined by an integrated approach including FMDM, PMF,
and SGCS. FMDMoffers comparable local background for PMF, avoiding
the biases and uncertainties of PMF. SGCSwith FMDMpollution thresh-
olds has high sensitivity to detect the hazardous areas of heavy metals,
especially that is more meaningful for the regions undergoing rapid in-
dustrialization and urbanization. In this study, the results of sources ap-
portionment using FMDMandPMF are consistent, and could verify each
other. In addition, hazardous areas delineation for each heavymetal co-
incides with the sources apportionment. Frommethodological perspec-
tive, the proposed integrated approach proves to be a powerful tool for
the source apportionment and hazardous areas delineation of heavy
metals in soils, which could provide reliable information for decision-
makers for soils management.
5. Conclusions

This study proposes an integrated approach including FMDM, PMF
and SGCS to determine quantitative sources and hazardous areas of
heavymetals in soils, laying a foundation for soil remediation and effec-
tive management recommendations for decision makers. The inte-
grated approach was applied to a heavy metals dataset from Boshan
as a case study. Cr, Cu, Ni, and Zn were dominated by parent materials
with contributions varying from 88.9% to 97.4%, mainly coming from a
natural source. 52.6% of the Cd concentration was controlled by parent
materials; coal combustion, industrial emissions, and traffic emissions
contributed 26.9% of the Cd concentration, and agricultural practices
contributed 20.5% of the Cd concentration. Coal combustion, industrial
emissions, and traffic emissions contributed 49.8% of Hg variation, and
parent materials contributed 45.8% of Hg variation. 81.9% of Pb was ex-
plained by parent materials, whereas coal combustion, industrial emis-
sions, and traffic emissions accounted for 15.6% of Pb concentrations.
17.4% of the total areas were determined as hazardous areas exceeding
moderate pollution thresholds, whereas an area of 33 hm2 suffered
from hazardous risk from high pollution. However, as a result of locally
relevant metals data, only three sources were identified and appor-
tioned. Further study is needed to apply this integrated approach to ap-
portion more detailed sources of heavy metals.
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