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Abstract: The ecological environment and resource endowment of an island are more vulnerable
compared to the mainland, and special assessment and measurement of the ecological suitability for
development are significant. Pingtan Island (Fujian, China) was taken as a case study. Changes in
ecosystem services value and the profit-and-loss balance between ecological footprint and biocapacity
were assessed using land use/cover changes based on remote-sensing images taken in 2009, 2014 and
2017, and the ecological suitability of development was measured. Results show that island
development led to a decrease in the ecosystem services value and an increase in ecological footprint
and biocapacity. The key ecological factors restricting the scale of island development are topography,
vegetation with special functions and freshwater. Biocapacity of islands can increase not only by
changing from lower-yield land types to higher-yield construction land types but also by external
investment. A new measurement framework was proposed that simply and clearly reveals the
ecological suitability of island development and the underlying key constraints.
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Highlights:

1. A new measurement framework for the ecological suitability of island development based on
ecosystem services value, ecological footprint and biocapacity was proposed.

2. Marine ecosystems were considered in calculations of ecosystem services value and biocapacity.
3. The key ecological factors restricting the scale of island development are topography, vegetation

with special functions and freshwater.
4. Island development improves the biocapacity through changes from lower-yield land types to

higher-yield construction land types and by external investment.

1. Introduction

With the continuous migration of population and economies to coastal areas, many coastal
economic developmental plans consider islands to be potential sites for development. With the
progress in marine science and technology, the social and economic development of islands has
changed from previous eras, which depended on marine biological resources, to the current era,
which depends on the comprehensive development of marine resources [1,2]. Islands have become a
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strategic focus for urban expansion toward the sea and the growth of regional development. Islands have
little freshwater, thin soil and poor vegetation, and are susceptible to typhoons, storm surges and
other natural disasters. Furthermore, island ecosystems have very limited abilities to self-regulate
these issues [3], and recovery is difficult once the ecology is destroyed. Nevertheless, the ecological
suitability of island development has attracted widespread attention [4].

In 1970, the Man and Biosphere (MAB) plan began to focus on the dynamic balance between human
beings and the environment in island habitats. In 1973, the MAB plan for the rational utilization of
island ecosystems was formulated and successively implemented in South Pacific, Mediterranean and
Caribbean islands [5]. The International Scientific Council for Island Development, established by the
United Nations Educational, Scientific and Cultural Organization (UNESCO), launched the journal
“Island” in 1992 to discuss issues related to the protection and sustainable development of island
resources. “Agenda 21”, drawn up at the Earth Summit in 1992, considered islands and island
communities to be special cases of economic development. Since then, scholars from various countries
have conducted studies on the responses of island environments to human social and economic
activities and the management and sustainable development of islands from multiple perspectives and
using multiple methods [6–14]. Most studies have been at the scale of the administrative unit because
of the difficulties of island data acquisition, whereas the ecological suitability of island development is
seldom measured and assessed directly [15,16]. With the rapid increase in anthropogenic disturbance,
the ecological vulnerability of islands has tended to increase [17]. Once the ecological environment
is destroyed, the living conditions of local residents are also affected. As islands are a significant
part of the coast, the ecological problems of islands cannot be neglected during coastal development,
and research into island sustainability is crucial to coastal sustainability. It is necessary to assess the
ecological suitability before development and to identify the areas that need special attention during
the development process.

Land use and land cover change (LUCC) is a direct manifestation of environmental changes
caused by island development, and changes in ecosystem services value (ESV) are the representation
of the state of the ecological environment [18]. Ecosystem services are the benefits that people can
obtain from ecosystems [19]. An evaluation model of the changes in ESV based on LUCC has been
widely used [20–23]. In addition, ecological footprint (EF) and biocapacity (BC) are also important
measurements of the ecological suitability of national and regional economic development [24,25].
EF refers to the biologically productive area the of land that can continuously serve a given population
by providing all of the resources needed and absorbing all of the generated waste. BC measures the
biological productivity [26,27]. The profit–loss relationship between EF and BC has also been used to
assess the sustainable development of islands [28–30].

Compared to mainland areas, the depth and breadth of ESV research on islands are insufficient [31],
and there is a lack of ecological assessment studies combining ESV, EF and BC. Moreover, in comparison
to mainland areas, an essential characteristic of an island is that it is surrounded by ocean and the
effects of development cannot be separated from the effects of the ocean. Historically, some islands
have maintained large populations of humans because they had the support of the marine ecosystems
and were able to live on resources from the sea. Therefore, it is necessary to take marine ecosystems
into consideration when researching an island’s ecosystem. Nevertheless, few studies have considered
the role of marine ecosystems in island development.

This study attempted to analyze changes in the ESV and the profit–loss balance between BC and
EF in the development of Pingtan Island. LUCC data of Pingtan Island were collected, and ocean
ecosystems were considered. Finally, a new measurement framework for ecological suitability was
proposed. This study provides a theoretical basis for island development and ecological protection.

2. Study Area

Pingtan Island is located on the east coast of Fujian, China. With a land area of 324.12 km2, it
is the fifth-largest island in China and the nearest county-level island between Mainland China and
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Taiwan Island (Figure 1). It is located in a subtropical, semi-humid climate region. The north and
south of Pingtan Island have hills and plateaus, while the middle is an area of plains [32]. The types of
coast are bedrock coast, sandy coast, muddy coast and mixed sand muddy coast. Since the end of 2009,
Pingtan Island has been viewed as an area for cross-strait exchange and cooperation, and a substantial
amount of attention has been paid to its development [33]. The development has been categorized
according to three types: transformation, preservation and aggregation [34]. The transportation
systems, green spaces and coastal tourism and leisure landscapes have been developed simultaneously.
Pingtan Island is a comprehensive experimental area for island development as well as social and
economic transformation and upgrading.Sustainability 2020, 12, x FOR PEER REVIEW 3 of 19 

 
Figure 1. The geographical location of Pingtan Island. 

Pingtan Island is located on the east coast of Fujian, China. With a land area of 324.12 km2, it is 
the fifth-largest island in China and the nearest county-level island between Mainland China and 
Taiwan Island (Figure 1). It is located in a subtropical, semi-humid climate region. The north and 
south of Pingtan Island have hills and plateaus, while the middle is an area of plains [32]. The types 
of coast are bedrock coast, sandy coast, muddy coast and mixed sand muddy coast. Since the end of 
2009, Pingtan Island has been viewed as an area for cross-strait exchange and cooperation, and a 
substantial amount of attention has been paid to its development [33]. The development has been 
categorized according to three types: transformation, preservation and aggregation [34]. The 
transportation systems, green spaces and coastal tourism and leisure landscapes have been 
developed simultaneously. Pingtan Island is a comprehensive experimental area for island 
development as well as social and economic transformation and upgrading. 

3. Methods and Data 

3.1. Data and Processing of LUCC 

Figure 1. The geographical location of Pingtan Island.

3. Methods and Data

3.1. Data and Processing of LUCC

The large-scale development and construction of Pingtan Island started in 2010. Cloud-free
thematic mapper (TM) images of April 2009 (before development) and December 2014 and October
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2017 (after large-scale land development was largely completed according to the plan) were chosen
for analysis. The resolution was 30 m. As a 10 m isobath is used to define the boundary of shallow
seas when calculating the sea areas of most fisheries, offshore construction and marine resources
statistics [35–37], a 10 m isobathic line was selected based on the development and utilization status of
the water area surrounding the island.

The downloaded remote-sensing images [38] were converted into the standard transverse
Mercator projections through the projection conversion module of Environment for Visualizing
Images (ENVI). At the same time, the frame deviation angles of the images were corrected. Then,
the maximum-likelihood method was used to classify the three remote-sensing images according to the
same classification criteria for land use. Common land use types in the ESV and BC calculations were
considered in the classification (Figure 2). Land use in Pingtan Island was divided into eight types:
cultivated land, forestland, grassland, construction land, bare land, wetland, water area and sea area.
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3.2. Calculation of ESV

Ecosystem services were classified into four major categories: supporting, regulating, provisioning
and cultural services [19]. Marine ecosystems are notably different from land ecosystems [39] (Table 1).

Based on analyses of the relevant literature, expert knowledge and statistical data, the equivalent
value factors of ESV were obtained for different land use types in China [40,41] and compared to global
ESV [42]. Due to the complexities of different ecosystems, there are differences in equivalent ESV due
to variations in biomass, climate, topography and soil [43]. The previous equivalents of ESV [41] had
been corrected according to the situation of Pingtan Island. Since vegetation types on Pingtan Island
are a mixture of Pinus thunbergii Parl., Casuarina equisetifolia Forst., Acacia confusa Merr. and shrub-grass,
and the cultivated land on Pingtan Island is mainly dry land, equivalent ESV of mixed coniferous
broad-leaved forest, shrub-grass and dry land were used as those of forestland, grassland and cultivated
land, respectively. The ecosystem services of construction land are similar to those of bareland, and thus
the equivalent ESV was adopted. Compared with water area, sea area cannot provide water supply,
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hydrological regulation or soil conservation services. Therefore, the equivalent ESV of these factors
was 0. The ESV of land types of the island and sea areas were calculated as follows:

ESV =
∑

Ak ×VCk (1)

where Ak is the area of land use type k, and VCk is the equivalent ESV (per unit area of land type).
One equivalent ESV is equal to the economic value of the annual natural grain yield of 1 hm2 of
farmland. Although there are still uncertainties in the evaluation system [44], these values are relatively
comparable in the same regions.

Table 1. Comparison of ecosystem services between land and marine ecosystems.

Land Ecosystem Services Marine Ecosystem Services

Supporting Services Maintain the functions of the ecosystem itself
Include orders of magnitude more

of primary production, material
recycling, and biodiversity

Provisioning Services
Provide products, including agriculture,

forestry, animal husbandry, fishery products,
freshwater, wood and medicinal materials

Include vastly larger food
supplies, raw material supplies

and genetic resources

Regulating Services

Include climate regulation, water
conservation, soil conservation, pollutant

degradation, wind protection, sand fixation,
disaster prevention and reduction etc.

Extend in scale to climate
regulation, air quality regulation,

water quality purification etc.

Cultural Services
Include landscape aesthetic appreciation,

leisure opportunities and support for tourism
and entertainment

Include many more spiritual and
cultural elements, knowledge

extension services and tourism
and entertainment services

3.3. Calculation of EF and BC

The biologically productive areas of land that serve humans were divided into six types (cultivated
land, grassland, forestland, water area, construction land and energy land) for the EF calculation, and
the unit of measurement was the global hectare (gha). EF can be calculated as:

EF = N·ef =
n∑

i=1

Ci
EPi

EQi =
n∑

i=1

(Pi + Ii − Ei)

EPi
EQi (2)

where ef is the per capita EF, N is the population, Ci is the consumption of the resource i, EPi is the yield
factor of the global average ecological productivity of the resource i (kg/gha), EQi is the equivalence
factor of land occupied by the resource I, and Pi, Ii and Ei are the annual production, annual import and
annual export of the resource i, respectively [45]. Data come from government statistics (see details in
the Supplementary Information) [46–48]. Because of the lack of historical data in this study, per capita
EF was calculated for the closed years 2014 and 2016.

According to the degree of productivity, global biological productive land can be divided into
five types (cultivated land, grassland, forestland, water area and construction land) when calculating
BC, where

BC = N·bc =
5∑

j=1

A j·EP j·EQ j (3)

Here, bc is the per capita BC, Aj is the productive land area of type j, EPj is the yield factor of the
productive land of type j (the ratio of the average productivity of type j land to that of type j land in the
world), and EQj is the equivalence factor of the productive land of type j (the ratio of type j land to the
comprehensive average productivity of all the land in the world) [45]. Yield factors and equivalence
factors vary by land use and by year [49]. The unit of BC is gha.
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One difference between the mainland and an island is that an island has the support of the
surrounding marine resources. The surrounding sea area within the 10 m isobathic line was included
in the calculation of BC, and the related coefficient is the same as water area. In addition, two more land
use types were classified in Pingtan Island. Wetland has a similar function as water area, and bareland
is mainly developing land, which could be used as construction land; thus the same coefficients as water
area and construction land were used. The equivalence factors and yield factors of BC were the same
as EF [50–53]. As some amount must be conserved for the biodiversity and integrity of ecosystems [54],
per capita BC was also calculated and the relationship of EF and BC can be concluded as

per capita BC = total BC × (1-α)/population (4)

EF ≤ BC× (1−α) (5)

Here, α means the bio-productive land area rate that is set aside as a biodiversity conservation
area to maintain the function of the ecosystem. Previous studies have discussed the specific number of
α, but controversies exist. Most studies adopted the 12% recommended by World Commission on
Environment and Development(WCED) [53–56]. In this study, 12% was also chosen in the calculation.
When Formula (5) is established, the ecological situation of an island is suitable for development,
which is called ecological overshoot. When it is not established, the ecology situation of an island is
poor and unsuitable for development, which is called ecological deficit.

Although the calculations of EF and BC involve large datasets and the results of different studies
vary [57,58], controversies exist concerning the calculated models [59,60], and the calculation methods
for the equivalence factor and yield factor are being continuously improved [61,62]. However, the focus
of this study was not on the specific values, but on the underlying meaning.

4. Results

4.1. LUCC on Pingtan Island

From the land use classification results of Pingtan Island in 2009, 2014 and 2017 (Figure 3),
the LUCC and the potential changes in land use (Table 2) show that the area of forestland increased but
then plateaued because of the increase of plantation activity during the development. The construction
land area increased because of the conversion of some grassland, cultivated land, wetland and sea
area to construction land. The greatest change was in the area of bareland, which initially increased,
then decreased, mainly because of reclamation and then conversion to construction land and cultivated
land. In addition, water area increased because of the increase in area of landscape waters such
as artificial lakes and ponds. Generally, ecological land was mostly replaced by cultivated land,
followed by wetland and sea area. Reclamation is a significant reason for the large areas of land use
change, which increased the island area and decreased sea and wetland area. Another reason is that
wetland and cultivated lands are flat and easy to convert to construction land.

Table 2. Land use area of Pingtan Island in 2009, 2014 and 2017.

Land Type 2009 (hm2) 2014 (hm2) 2017 (hm2) Change Trend

Forestland 5505.93 6493.86 6397.11 + -
Grassland 4226.58 3541.32 3512.07 - -

Cultivated land 11,246.85 8635.05 9163.71 - +
Construction land 2729.43 3707.01 4804.38 + +

Bareland 751.59 4767.84 3561.93 + -
Wetland 2617.83 1123.29 944.01 - -

Water area 572.40 593.10 624.15 + +
Sea area 17,113.41 15,902.55 15,756.66 - -

Total 44,764.02 44,764.02 44,764.02

Note: “+” means increase and “-” means decrease.
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4.2. Changes in ESV

The equivalents of ESV per unit area of land use type (Table 3) and the ESV in 2009, 2014 and
2017 (Table 4) indicated that the value equivalents of ecological provisioning services, ecological
regulating services, ecological supporting services and ecological cultural services declined (Figure 4).
Among them, the most significant change was the shortage of water provisioning services of the
ecosystem after island development, especially in 2017.



Sustainability 2020, 12, 2553 8 of 19

Table 3. Equivalents of ESV per unit area. (unit: CNY·hm−2
·a−1).

Type of
Ecological Land

Provisioning Services Regulating Services Supporting Services Cultural Services

Food
Supply

Raw Material
Supply

Water
Supply

Air
Regulation

Climate
Regulation

Environment
Purification

Hydrological
Regulation

Soil
Conservation

Nutrient
Cycle Biodiversity Aesthetic

Landscape

Forestland 0.31 0.71 0.37 2.35 7.03 1.99 3.51 2.85 0.22 2.60 1.14
Grassland 0.38 0.56 0.31 1.97 5.21 1.72 3.82 2.40 0.18 2.18 0.96

Cultivated land 0.85 0.40 0.02 0.67 0.36 0.10 0.27 1.03 0.12 0.13 0.06
Construction land 0.00 0.00 0.00 0.02 0.00 0.10 0.03 0.02 0.00 0.02 0.01

Wetland 0.51 0.50 2.59 1.90 3.60 3.60 24.23 2.31 0.18 7.87 4.73
Water area 0.80 0.23 8.29 0.77 2.29 5.55 102.24 0.93 0.07 2.55 1.89

Sea area 0.80 0.23 0.00 0.77 2.29 5.55 0.00 0.00 0.07 2.55 1.89
Bareland 0.00 0.00 0.00 0.02 0.00 0.10 0.03 0.02 0.00 0.02 0.01

Table 4. Changes in the equivalents of ESV on Pingtan Island in 2009, 2014 and 2017. (unit: CNY·hm−2
·a−1).

Year
Provisioning Services Regulating Services Supporting Services Cultural Services

Food
Supply

Raw Material
Supply

Water
Supply

Air
Regulation

Climate
Regulation

Environment
Purification

Hydrological
Regulation

Soil
Conservation

Nutrient
Cycle Biodiversity Aesthetic

Landscape

2009 28,356.50 16,151.49 15,097.75 47,462.26 114,700.73 127,279.74 160,564.63 44,069.09 5030.93 90,762.21 56,852.42
2014 24,467.99 14,403.44 11,499.36 43,027.85 109,029.61 116,319.54 126,762.86 39,216.65 4459.18 76,800.37 47,895.46
2017 24,692.94 14,413.78 11,258.14 42,665.84 107,479.00 114,835.90 125,281.60 39,027.80 4455.76 74,847.83 46,722.68

Change - + - + - - - - - - - - - - - - - - - - - -

Note: “+” means increase and “-” means decrease.
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4.3. Changes in EF and BC

The BC of Pingtan Island in 2009, 2014 and 2017 shows that the total BC of the island increased
after development, whereas the per capita BC did not increase, but decreased from 2014 to 2017 due
to the increase in population (Table 5). The per capita EF of Pingtan Island in 2014 and 2016 were
calculated as 1.161 gha and 1.264 gha, respectively, and in 2010 and 2015, they were 0.925 gha and
1.288 gha, respectively [53]. The per capita EF in 2014, 2015 and 2016 were higher than that in 2009.
However, the per capita EF in 2016 was lower than that in 2015 although the total EF was higher
(Figure 5).

Table 5. Calculated results of BC on Pingtan Island in 2009, 2014 and 2017. (unit: gha).

Ecological Type Equivalence
Factor [50]

Yield Factors
BC in 2009 BC in 2014 BC in 2017Liu [52] Qiu [51] Average Data

Forestland 1.28 0.86 0.785 0.8225 5796.64 6836.74 6734.88
Grassland 0.46 0.51 2.9079 1.70895 3322.59 2783.89 2760.90

Cultivated land 2.5 1.74 1.5175 1.62875 45,795.77 35,160.84 37,313.48
Construction land 2.5 1.74 1.5175 1.62875 11,113.90 15,094.48 19,562.83

Wetland 0.37 0.74 1 0.87 842.68 361.59 303.88
Water area 0.37 0.74 1 0.87 184.26 190.92 200.91

Sea area 0.37 0.74 1 0.87 5508.81 5119.03 5072.07
Bareland 2.5 1.74 1.5175 1.62875 3060.38 19,414.05 14,503.73

Total BC (gha): 75,625.02 84,961.54 86,452.69
The population of Pingtan Island (×104): 38.97 42.79 44.32

Per capita BC (gha): 0.171 0.175 0.172
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5. Discussion

5.1. The ESV Revealed the Restraining Factors in Pingtan Island Development

Generally, island development was driven by social and economic development needs.
Considering the constraints of forest and cultivated land protection policies, the non-arable parts of
cultivated land, grassland, and wetlands were generally converted to construction land. Sea area was
also reclaimed for land expansion. Consequently, ecological land decreased and construction land
increased, which led to a significant reduction in the ESV (Figure 6).
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During the development of Pingtan Island, the occupation of wetlands for development and
construction meant that the supply of water resources was insufficient, leading to the decline of surface
water levels. Even so, the ecological environment also requires freshwater [14,63–65], and shortages
result in soil desertification and withered plants, threatening the ecosystem. Since most islands in the
world, including Pingtan Island, are short of freshwater [66,67], freshwater is a constraint in island
development. As the supplement of freshwater on the island depends on rainfall and groundwater,
island development should not destroy vegetation or alter geomorphologic characteristics that store
and recharge groundwater.

The reduction of provisioning services could be externally compensated for after island
development. Other than the discharge of waste gas and wastewater, which can be adjusted
through technology, regulating and supporting services can only be provided by the island’s own
ecosystem. Wetland and water areas contributed the most to hydrological regulation, while forestland
contributed the most to the regulating and supporting services. Hence, the protection of wetland
and vegetation, especially vegetation with special functions such as wind breaking and sand-fixation,
is the most important aspect of island development. Furthermore, previous studies have shown
that the ecological effects of forestland communities with distinct tree, shrub and grass layers are
two to three times that of single-layer grass structures [68]. Construction land should maintain a
sufficient proportion of garden space and wetland, especially those of relatively large areas and complex
ecological community structures.

In addition, wetland makes the greatest contribution to cultural services, followed by water area
and sea area. Transformation from ecological land to construction land results in the loss of natural
landscapes. Natural landscapes, without any traces of human intervention, are difficult to reconstruct
after they have been destroyed. Recreation, ecotourism and aesthetic values decrease. Consequently,
scenic spots with higher cultural service functions should also be protected.

Many coastal countries, such as the USA, Netherlands and China, have conducted coastal
reclamation for agriculture, industry and urban development [69–71]. Reclamation can remedy
the shortage of land and provide economic benefits. The continuous large-scale reclamation of
coastal regions including islands leads to enormous losses to vegetated coastal wetlands and negative
environmental impacts [72]. Furthermore, sea area and the related industries such as fishery and
aquaculture are also affected by reclamation. For islands, ESV including food supply, climate regulation
and biodiversity can be obtained from the surrounding sea and cannot be ignored. Thus, it is essential
to consider sea area during development.

In spite of the uncertainty regarding the use of equivalent ESV and the difficulties in measuring
values [73,74], the objective of this study was not to calculate absolute values but to explore the
marginal changes in ESV related to environment changes [75,76].

5.2. Ecological State of the Island after Development, Based on EF and BC

The ecological deficits of Pingtan Island are obvious (Figure 5). A comparison of EF and BC
between Pingtan Island with Fujian, China and the world (Table 6) shows that the EF and BC of Pingtan
Island are lower than the averages of Fujian, China and the world before and after development.
The results indicate that Pingtan Island might not be able to provide enough ecological resources to
support a high quality of life for the existing population.

Table 6. Regional per capita EF and BC. (Unit: gha).

The Average Data
of the World [77]

The Average Data
of China [50]

The Average Data
of Fujian [78]

The Average Data of
Pingtan Island

Per capita EF 2.840
(2014)

3.600
(2016)

2.258
(2014)

0.925
(2010)

1.161
(2014)

1.264
(2016)

Per capita
BC

1.680
(2014)

1.000
(2016)

1.961
(2014)

0.171
(2009)

0.175
(2014)

0.172
(2017)
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Nevertheless, utilization of the non-renewable resources left from the past and renewable resources
can support the development of a social economy, even though the ecological deficit of the region is
serious [79]. According to the calculated model of BC, the equivalence and yield factors of construction
land are higher than those of natural ecosystems because of human productive labor. Therefore, the BC
of islands improves when the ecological land with low BC is converted into construction land (Figure 7).
Furthermore, after the development of Pingtan Island, the deficits in food, raw materials and energy
could be adjusted by trade, and freshwater resources could be introduced from the mainland via a
cross-sea pipe. With the transformation of industry during island development, provisioning services
previously provided by the island’s ecosystem can be obtained from elsewhere [80,81]. That is, the BC
can be obtained externally. Nonetheless, external supplies are limited due to distances, transportation,
costs etc.
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Both the BC and EF of Pingtan Island increased with island development. Island development
can be divided into a primary stage, an improvement stage, a high-speed development stage and a
top stage. Assuming that the EF and BC are balanced before island development, the primary stage
is simply the aggregation of EF. However, during the improvement and high-speed development
stages, urbane expansion and the formation of urban systems often require mass infrastructure
construction, resulting in a continuous increase in total EF. At the top stage, with the improvements in
infrastructure, the EF providing for construction would decrease and the EF providing for humans
would improve. This is the reason for the continuous migration from inland areas with rich ecology
but poor infrastructure to coastal areas with ecological deficits but good infrastructure [82], and it is
also the theoretical basis for supporting island development.

However, with the continuous aggregation of populations and industry, the total EF of an island
would far exceed the total BC. In contrast to total EF and BC, per capita EF and BC decreased from
2014 to 2017. Therefore, strategies such as population control, agriculture relocation and pollution
reduction should be adopted to balance the EF and BC of the island [83].

5.3. A New Measurement Framework of Ecological Suitability

As freshwater is one of the restraining factors of island development, water demand is
closely associated with water supply and hydrological regulating services of the ecosystem. Thus,
freshwater supply can be used to help determine the ecological suitability of island development.
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In recent studies, lakes, wetlands and the water demands of rivers were chosen as indicators to
determine the ecological suitability of development [84–86]. If the water demands of wetland and lakes
can be met before island development, while some of them cannot be met after island development,
the reduction in the hydrological regulating service due to island development has exceeded the
threshold. At this time, the area of ecological land converted into construction land has also exceeded
the threshold.

Moreover, resources on islands are limited, and some ecological land will be converted into
construction land. However, not all ecological lands can be converted. Except for the land that
should be set aside, the conversion is restricted by topography [87], water conservation and vegetation
with special functions such as wind breaking. If the remaining ecological lands were converted into
construction land and the BC is still lower than the EF, the scale of island development has reached the
upper limit.

In general, the water demand, the land area that can be converted into construction land, and the
profit–loss balance between EF and BC can be used as assessment indexes. A framework for measuring
the ecological suitability of island development based on ESV, BC and EF was designed (Figure 8). All of
the characteristics of islands are fully considered in the framework, and sea area is included as ecological
land, which makes the evaluation of ecological suitability more comprehensive. Water demand is
included in the framework, which considers the importance of this restricting factor. In addition,
through analysis of the changes in ESV, we can determine which services need to be supplemented
from off-island. The quantitative calculation depends on the further study of equivalent factors and
yield factors of ESV, as well as water yield and the water demand of the ecology. The framework is
suitable for islands that develop rapidly, including Pingtan Island, with rapid land use change and
high pressure on ecological environment. The framework provides a guide to balance economics and
the ecological environment when deciding on island planning and development.

Although islands can obtain more BC from the surrounding oceans, the increased value depends
on the available ocean area and resources. Compared with the mainland, island development consumes
more energy and raw materials for infrastructure, and only the islands with relatively large land areas
and certain population and economic thresholds have value for development. Otherwise, islands
should be protected as specific ecosystem resources for science, education and tourism.
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6. Conclusion

Taking Pingtan Island in Fujian, China, as a case study, and through analyses based on the
ecosystem services value, ecological footprint and biocapacity, the following main conclusions
were obtained:

(1) Development on Pingtan Island led to a decrease in ecosystem services value. Vegetation and
freshwater resources that provide regulating services are the main restricting factors of development
on Pingtan Island and must be strictly protected.

(2) Ecologically suitable and sustainable development on islands can be realized when the increase
in biocapacity matches the increase in the ecological footprint. Biocapacity can be increased not only
by changing from lower-yield land types to higher-yield construction land types but also by external
investment. This is an important theoretical basis for supporting island development. Moreover,
strategies can also be taken to reduce the ecological footprint.

(3) A new measurement framework for ecological suitability of island development was proposed,
based on the ecosystem services value, ecological footprint and biocapacity, which can simply and
clearly reveal the underlying key constraints. The framework contributes to island development
resource management, ecological protection and ecological restoration.
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