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A B S T R A C T

Estimations of the soil surface water contents and distributions play a key role in the ecological, environmental,
and topographical investigations for intertidal mudflats. However, existing techniques have limitations. Long-
range terrestrial laser scanners (TLSs) can record the co-located intensity value which refers to a measure of the
backscattered laser from each scanned point. Most long-range TLSs emit near-infrared lasers that can be strongly
absorbed by water. Thus, the intensity values can be used as proxies for water contents. In this study, the
intensity data of long-range TLSs are corrected for the incidence angle and distance effects to quantitatively
estimate the soil surface water contents of intertidal mudflats. A case study for a mudflat in Chongming Island,
Shanghai, China, is conducted. Results indicate that compared with traditional techniques, the corrected in-
tensity data of long-range TLSs are extremely effective data sources for a quick, accurate, and detailed estimation
of water contents for large-area mudflats. The estimation root mean square error is approximately 3%.
Furthermore, the 3D distributions of the water contents can be accurately mapped by combining the point cloud
of the mudflats to potentially analyze the intrinsic association among water contents and topography, vegetation
coverage, and habitation of creatures in mudflats.

1. Introduction

Mudflats (i.e., tidal flats) are nearly flat coastal areas in intertidal
zones that are considered the transitions and hubs between ocean and
land. Materially, mudflats consist of unconsolidated sediments and
precipitated salts and are characteristically wet and periodically sub-
merged by sea water (Eisma, 1998; Le Hir et al., 2000; Wang et al.,
2012). Geologically, mudflats can be viewed as exposed layers of bay
mud that are resulted from the deposition of estuarine silts, clays, and
marine animal detritus. From the environmental and ecological per-
spectives, mudflats shelter a myriad of ecological niches and provide
valuable habitats for creatures, including microorganisms, worms,
crabs, sand fleas, birds, and fishes (Choe et al., 2012; Phang et al.,
2015). Thus, a detailed investigation of mudflats is beneficial to the
geomorphological, hydrological, ecological, environmental, and hy-
drodynamic research in intertidal zones. The distribution and variation
of soil surface water contents (moistures) are key parameters in the
investigation of mudflats. Water content estimation is important for the
comprehensive understanding of the formation, transportation,

movement, and material exchange mechanisms of a mudflat
(Brakenhoff et al., 2019; Nield et al., 2011; Nield and Wiggs, 2011;
Schmutz and Namikas; 2018; Smit et al., 2019; Oblinger and Anthony,
2008). Furthermore, water is necessary for the creatures that live in
mudflats. Water contents have a notable impact on the habitation,
migration, and metabolism of these creatures. Given the effects of in-
filtration and gravity, water contents are closely related to the topo-
graphy of a mudflat (Li et al., 2018).

Traditionally, several representative samples are manually col-
lected, weighted, and dried at indoor environments for the calculation
of water contents of a mudflat (i.e., gravimetric method). Another
conventional method is to use in situ water content measurement
probes, e.g., Delta-T theta probe, commercial soil moisture sensors
(Schmutz and Namikas, 2011; Edwards et al., 2013; Wiggs et al., 2004;
Yang and Davidson-Arnott, 2005). The use of traditional methods is
laborious, destructive, and time consuming. Periodic flooding, dense
vegetation, and muddy environments make the mudflats usually
human-inaccessible (Xie et al., 2017). Traditional methods require di-
rect contact to the mudflats, thereby placing data collectors in danger.
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Moreover, limited sparse samples from traditional methods cannot
obtain a detailed presentation of water distributions. Technological
advancements have introduced various alternative techniques for the
water content investigation of mudflats. Particularly, remote sensing
techniques can estimate the water contents of large-area mudflats in a
noncontact way using an extremely narrow and continuous spectral
channel (Darke et al., 2009; Nolet et al., 2014; Rajput et al., 2018).
However, remote sensing images are subjected to the environment,
such as sunlight, atmosphere, and cloud. Also, only two-dimensional
(2D) information can be provided by remote sensing images, and the
spatial resolutions of remote sensing images are insufficient for the
investigation of the microtopographic-scale water content variations.
Therefore, existing techniques cannot adequately characterize the
spatiotemporal distribution of surface water contents of mudflats.

In the past two decades, terrestrial laser scanners (TLSs) have been
widely used in investigating the detailed geomorphological character-
istics of perennial inaccessible intertidal mudflats because of its ad-
vantages of being contactless, high precision, and high resolution
(Andriolo et al., 2018; Guisado-Pintado et al., 2019; Nahon et al., 2019;
Nguyen et al., 2018; Telling et al., 2017). The advantage of TLSs over
other surveying techniques is that TLSs can provide accurate and dense
sets of 3D coordinates of scanned objects in a rapid and noninvasive
manner by firing monochromatic beams of light to determine the dis-
tances (ranges) between the scanned points and the scanner center.
TLSs can reflect detailed geomorphological features and present new
perspectives in the investigation of mudflats by using a high-density
point cloud (Xie et al., 2017; Donker et al., 2018; Fabbri et al., 2017). In
addition to the 3D geometrical measurements, TLSs can simultaneously
measure the power of the backscattered laser signal reflected by each
point. Backscattered optical power is internally converted to voltage,
amplified in the system, and finally transformed into a digital number
called intensity (Höfle and Pfeifer, 2007; Kaasalainen et al., 2011;
Kashani et al., 2015). The power of the backscattered laser depends on

the reflectance of the scanned target. Therefore, intensity value is clo-
sely related to the target reflectance. Most TLS systems operate in the
near-infrared spectrum, where infrared laser light can be strongly ab-
sorbed by water. Even a limited amount of water has a crucial effect on
the reflectance properties of the target (Tan et al., 2016). Thus, the
intensity data can be used theoretically to derive the soil surface water
contents of mudflats. However, the original intensity data are sig-
nificantly affected by the incidence angle between beam propagation
direction and surface orientation, and the distance (range) between the
scanner center and the measured point (Xu et al., 2017; Tan and Cheng,
2015; Fang et al., 2014). The elimination of the effects of distance and
incidence angle is indispensable for deriving water contents from the
intensity data.

TLSs can be classified into short-, middle-, and long-range scanners
based on their ranging capability. The maximum measured distances
for short- and middle-range TLSs are limited; hence, these TLSs are not
suitable for the data collection of large-area mudflats. On the contrary,
long-range TLSs can rapidly obtain point cloud from several meters up
to kilometers with near-centimeter precision (Tan et al., 2019). This
technology is especially suitable for large-area topographical data ac-
quisition. To date, TLS intensity data are proven effective data sources
in estimating the water contents of different targets, e.g., metro/un-
derground tunnels (Tan et al., 2016; Xu et al., 2018), building materials
(Suchocki and Katzer, 2018), and tree leaves (Zhu et al., 2015). The
water contents of the aforementioned targets are relatively low (<20%).
Additionally, several researchers have already attempted to utilize the
distance effect corrected intensity data of short-range (e.g., Leica
Scanstation) and middle-range (e.g., Riegl VZ-400) TLSs for the water
content estimation of aeolian sandy beaches (Nield and Wiggs, 2011;
Nield et al., 2011, 2014; Nolet et al., 2014; Smit et al., 2018). The water
contents of intertidal mudflats are generally higher than those of the
sandy beaches. Thus, the estimation model for sandy beaches may not
be suitable for mudflats. Moreover, apart from the distance effect, the

Fig. 1. Location of the study mudflat. The orthophoto of the mudflat was provided by Google Earth (http://www.google.cn/maps). Riegl VZ-4000 TLS and Trimble
R8 RTK reference station were positioned at the blue and green points, respectively. The north corner of the mudflat (yellow dotted frame) cannot be scanned by the
TLS. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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incidence angle has a critical effect on the intensity data; hence, this
effect should also be considered to improve the accuracy of water
content estimation (Poullain et al., 2016). In contrast with existing
studies, this study adopts a long-range TLS (Riegl VZ-4000) to collect
the 3D point cloud and intensity data of a mudflat in Chongming Island,
Shanghai, China. Intensity data are corrected for the incidence angle
and distance effects by combining indoor control experiments and
naturally homogeneous targets to estimate the soil surface water con-
tents and distributions of the mudflat. The remainder of this paper is
organized as follows. Section 2 reviews the instruments used and the
chosen study site. Section 3 outlines the methodology for mudflat water
content estimation using the corrected intensity data of long-range
TLSs. Sections 4 and 5 present the results and discussions, respectively.
Section 6 presents the conclusions of this study.

2. Study site and instruments

2.1. Study site

An intertidal mudflat (N 31.73°, E 121.22°) located on Chongming
Island, Shanghai, China, was selected as the study site for this work
(Fig. 1). Chongming Island is located at the mouth of the Yangtze River,
and it is the largest estuary alluvial island and the largest sand island in
China. The mudflat that runs from north to south is located on the
southwest corner of Chongming Island. The elevation of the mudflat
gradually rises from north to south and varies slightly from east to west.
The mudflat is long and narrow with a size of approximately
500m×100m. The mudflat is composed of soft clay and silt. Thus,
walking on it is extremely difficult. The muddy depth varies from 0.1m
to 0.5 m. The mudflat surface is bare, that is, it does not have vegetation
coverage. Dense reeds and other salt-tolerant plants grow in salt-mar-
shes on the east side of the mudflat. The height of these vegetations is
approximately 1.0–2.0 m. Several tidal ditches that run from east to
west are distributed among the mudflat. The width of the ditches is
approximately 0.5–3.0m. The sea is located on the west side of the
mudflat. Chongxi Wetland Ecological Construction Research Project
Office (CWECRPO) is located on the northeast corner. Narrow cement
roads, which facilitate the access to the mudflat, are found around the
CWECRPO.

2.2. Instruments and data collection

A Riegl VZ-4000, which is a pulsed TLS system with remarkable
ranging capability that can measure distances from 5m to 4000m, was
adopted as the scanner in this study. Its vertical and horizontal field of
views are 360° and 60°, respectively. The intensity value for each single
point is recorded in decibel (dB), which is a logarithmic unit that in-
dicates the ratio of a physical quantity (usually power or intensity)
relative to a specified or implied reference level and does not have any
physical meaning. Therefore, intensity data are dimensionless. Also,
Riegl VZ-4000 can theoretically measure distance of up to 4000m.
However, the largest distance capability is achieved under specific
conditions (e.g., perpendicular incidence angle, flat target larger than
the footprint of the laser beam, 90% target reflectance, and standard
clear atmosphere). In actual scans, the maximum measured distance is
considerably less than 4000m (Tan et al., 2019). Empirically, the
analysis of different field data acquired by Riegl VZ-4000 shows that
the scanned data at long distances are sparse and unreliable. Similar to
Tan et al. (2019), the present study disregarded the data with distances
longer than 500m to ensure good reliability and quality of the point
cloud.

The mudflat was scanned by the Riegl VZ-4000 on June 6, 2018,
when was sunny and windless. The Riegl VZ-4000 was positioned on
the cement road at the southwest corner of the CWECRPO (blue point in
Fig. 1). The scanning survey began from 11:30 a.m. and ended at 12:10
p.m., which was exactly within the low tide time. The scanning field of

view was set to the default state. The vertical and horizontal angle
resolutions were set to 0.02° and 0.03°, respectively. The pulse repeti-
tion rate was fixed as 30 kHz. In this study, the scanning parameters of
Riegl VZ-4000 were kept unchanged for all the experiments. The pre-
processing of the point cloud data was conducted using the standard
software RiSCAN PRO v1.8.1 (RIEGL Laser Measurement Systems
GmbH, Horn, Austria). The point cloud of the mudflat was then ex-
ported to MATLAB for intensity correction and water contents estima-
tion by using developed algorithms that were introduced in Section 3.

2.3. Mudflat sampling

After data collection using Riegl VZ-4000, several samples of the
mudflat were immediately collected for the following purposes: (1) to
quantitatively estimate the relationship between water contents and
corrected intensity data, and (2) to validate the accuracy of the esti-
mation model. The size of each sample was approximately
10 cm×10 cm, and their thickness was approximately 3–5 cm. Each
sample was stored in a sealed plastic bag. A total of 48 samples were
evenly collected throughout the mudflat. The water contents of the field
samples were measured in a laboratory using the gravimetric method
(Nield et al., 2011; Smit et al., 2018), which was in detail introduced in
Section 3.3. To determine the accurate positions of the samples in the
point cloud during postprocessing, a Trimble R8 GNSS RTK system was
used as an auxiliary tool to measure the positions of the centers of the
field samples. The Trimble R8 reference station was placed at ap-
proximately 3m nearby the TLS (green point in Fig. 1). The height of
the Trimble R8 reference station was 1.80m. The horizontal and ver-
tical accuracies of the RTK system were 0.01m and 0.02m, respec-
tively.

3. Methods

3.1. Intensity correction

TLS intensity is a measure of the electronic signal strength that is
obtained by converting and amplifying the backscattered optical power
of the emitted signal (Tan and Cheng, 2015). The TLS intensity data
correction has been widely investigated in the past ten years, and many
different correction methods have been proposed (Fang et al., 2014;
Franceschi et al., 2009; Kaasalainen et al., 2009; Kaasalainen et al.,
2011; Kashani et al., 2015; Tan and Cheng, 2015; Tan et al., 2016; Tan
and Cheng, 2016; Xu et al., 2017; Yan and Shaker, 2014). Intensity
correction for long-range TLSs are limited by the length limit of indoor
environments and the laborious data acquisition and processing work
(Tan et al., 2019). In this study, the intensity data of Riegl VZ-4000
were corrected using the method in Tan et al. (2019).

Given that all sensor-related factors are kept constant during the
campaign, and the atmospheric transmission effect can be neglected,
the intensity data obtained by a TLS system are merely influenced by
target reflectance, incidence angle, and distance. The original intensity
data can be expressed as (Tan and Cheng, 2015; Tan et al., 2019):

=I f f f d( ) ( ) ( )1 2 3 (1)

where f1, f2, and f3 are the functions of target reflectance , in-
cidence angle , and distance d, respectively. The incidence angle and
distance are derived as follows:
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where =n n n n( , , )1 2 3 is the surface normal vector implemented by
computing the best-fitting plane with the available data on the nearby
neighborhood of each measured laser point. The incidence laser ra-
diation vector =OS x x y y z z( , , )0 0 0 is calculated using the
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original geometrical coordinates x y z( , , ) of the scanned point and the
coordinates x y z( , , )0 0 0 of the scanner center.

The corrected intensity (Is) that is merely related to the target re-
flectance can be written as:

=I f f f d( ) ( ) ( )s s s1 2 3 (3)

where f f d( ) ( )s s2 3 is a constant, and s and ds are the reference
incidence angle and distance, respectively. According to Tan and Cheng
(2015), f ( )2 and f d( )3 can be empirically approximated by a poly-
nomial regardless of the internal details of the instrumental mechan-
isms, that is, = =f ( ) ( )i

N
i

i
2 0
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3 0
3 , where N2, i,

N3, and i are polynomial parameters. Therefore, the corrected intensity
is obtained by dividing Eqs. (1) and (2) (Tan and Cheng, 2015; Tan
et al., 2019):
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Eq. (4) was used to calculate the corrected intensity data for Riegl
VZ-4000 in the present study. The polynomial parameters were esti-
mated, as introduced in Section 3.2.

3.2. Estimation of polynomial parameters

To estimate the polynomial parameters of f ( )2 for Riegl VZ-4000,
four different homogeneous targets were pasted on a board (Fig. 2(a)).
The board could be rotated and was scanned at a fixed distance of 7.5m
from the scanner at indoor environments. The incidence angle of the
board was nearly changed from 0° to 85° in steps of 5°. The board was
scanned in each orientation step. The point clouds of the four targets
scanned in the laboratory at each orientation step were manually
sampled and exported in RiSCAN PRO v1.8.1. The mean incidence
angle and original intensity over all the sampled points of the four re-
ference targets were used for the analysis. Given this circumstance, dx
was unchanged. The reflectance values of the homogeneous reference
target were unknown, but were the same for all the points of the
homogeneous reference target. Therefore, x and dx can be considered
constants; f ( )1 and f d( )3 in Eq. (1) were changed into constants. Hence,
the original intensityI was merely related to the incidence angle . N2
and i can be estimated by analyzing the scanned data of the homo-
geneous reference targets.

In the present study, a cement road on a seawall was selected to
derive the parameters of f d( )3 for Riegl VZ-4000 (Fig. 2(b)). The in-
cidence angle-corrected intensity Ia of the cement road was calculated
by using the derived parameters of f ( )2 in the first step. The re-
flectance ( y) was unknown but constant for the cement road. The in-
cidence angle-corrected intensity Ia of the road did not depend on the
incidence angle. Thus, Ia was merely related to distance. N3 and i can
be estimated by analyzing the relationship between the incidence

angle-corrected intensity and distance of the cement road using a least
squares adjustment method. The cement road from the three different
sites were scanned to reduce possible errors or noises in one scanning
campaign.

3.3. Estimation of water contents using corrected intensity data

The coordinate system of Riegl VZ-4000 is the local instrumental
system; whereas RTK adopts the WGS84 coordinate system. To match
the two different data sources acquired by TLS and RTK, five special-
made plastic targets (Fig. 2(c)) were used to provide both translation
and rotation parameters between the two coordinate systems. A circle
reflective sheet was pasted on the center of each plastic target. The
plastic targets were mounted on tripods, and the tripods were set up
around the scanner with a detecting range of 50–100m in the study
area. Riegl VZ-4000 scanned the point cloud of the circle reflective
targets. RiSCAN PRO automatically identified and extracted the point
cloud and calculated the 3D coordinates of the centers of the circle
reflective sheets. The positions and elevations (WGS84 coordinates) of
the centers of these five reflective sheets were also measured using the
RTK. The RTK receiver was placed on the top cylinder of the plastic
targets (Fig. 2(c)). Additionally, the WGS84 coordinates of several
feature points (e.g., building corners, junction points between pole and
ground) were measured, and the feature points were manually found in
the point cloud. The translation and rotation parameters between the
RTK and TLS coordinate systems were calculated using the two sets of
coordinates from the centers of five circle reflective sheets and feature
points. Therefore, the positions of the centers of the collected samples
measured by the RTK could be transformed into the instrumental co-
ordinates of Riegl VZ-4000. Fig. 2(d) indicates the corresponding
nearest points to the center of the samples in the point cloud. The
neighbor points (10 cm×10 cm) around the corresponding nearest
points were manually selected, and the mean intensity values of the
neighbor points were used for analysis. This scenario corresponded to
the fact that the field samples were 10 cm×10 cm, and the mean in-
tensity values of the field samples were adopted.

The field samples were taken back to the laboratory for water
content measurement. First, the weights (W0) of the field samples were
measured using a precise electronic scale (MP 200A, accuracy:
±0.001 g). The field samples were taken out for weighing again by
heating under 105℃ for 24 h in an oven (Nield et al., 2011; Smit et al.,
2018). Currently, the field samples were assumed to contain no water,
and the weights of the field samples were W1. Thus, the water contents
of the field samples were calculated as:

= ×W W W
W

100%0 1

0 (5)

Some dry mud was taken from the field samples and was placed in a
plastic plate (size: 10 cm×10 cm×3 cm). Then, the mud was evenly

Fig. 2. (a) Four different homogeneous targets. (b) A cement road. (c) One of the plastic targets used to match the data acquired by Riegl VZ-4000 and Trimble R8
GNSS RTK. A circle sheet made of reflective material was pasted on the center of the planar target. (d) Calculation of the corrected intensity values for the field
samples. The black point was the nearest point to the sample. The mean corrected intensity value of the points within the yellow rectangle (10 cm×10 cm) was used.
(For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

K. Tan, et al. ISPRS Journal of Photogrammetry and Remote Sensing 159 (2020) 129–139

132



stirred with water to make a new sample. The dry mud and added water
were weighted using the MP 200A electronic scale; hence, water con-
tent of the new sample was determined. The initial water content of the
new sample was basically saturated (approximately 40%).
Subsequently, the Riegl VZ-4000 was used to scan the new sample, and
the distance between the scanner and the new sample was approxi-
mately 10m. Afterwards, the new sample was placed into the oven for
several minutes (15–30min). Finally, the new sample was taken out for
weighting and scanning using the Riegl VZ-4000 again. The water
contents (W ') of the new sample and their corresponding original in-
tensity data were obtained by repeating the aforementioned steps until
the new sample became dry. The original intensity data were corrected
by using Eq. (4) to determine the corrected intensity data. The point
clouds of the new sample at each scan were manually sampled and
exported in RiSCAN PRO v1.8.1. The mean original intensity over all
the sampled points of the new sample was used for the analysis. In this
study, the datasets of the new sample were used for estimating the
relationship between the corrected intensity data and water contents
because the changes in the water contents of the new sample were more
continuous and controllable than that of the field samples. On the
contrary, the datasets of the field samples were used to validate the
accuracy of the estimation model.

Eq. (3) shows that the corrected intensity data are merely related to
reflectance. The water would absorb the laser and reduce the re-
flectance of the mudflat. Therefore, corrected intensity data could be
used to quantitatively estimate the water content, as shown by Eq. (6).

=W F I( )s
' (6)

where W ' is the water content, and F is a monotonically decreasing
function of Is. The specific form of F can be determined by mathema-
tically analyzing the relationship between the corrected intensity data
and water contents of the new sample. Considering that water contents
decrease with the corrected intensity data, and the corrected intensity
would be infinitely close to a constant when the water content trends to
0%, an exponential function (Eq. (7)) was used to fit the relationship
between the corrected intensity and water contents in this study,

similar to the studies of Nield et al. (2011, 2014), and Smit et al. (2018).

=W e I'
1

s2 (7)

where 1 and 2 are two parameters. By conducting a logarithm
operation on the two sides of Eq. (7), we can obtain

= +L X X Is1 2 (8)

where =L log W( )e
' , =X log ( )e1 1 , and =X2 2 (e is the natural base).

By a least squares adjustment of Eq. (8), parameters X1 and X2 can be
estimated as =X X B B B L[ , ] ( )T T T

1 2
1 , where =B I[1, ]s . Thus, = e X

1 1

and = X2 2. After obtaining 1 and 2, the water contents of the mudflat
can be calculated using Eq. (7) based on the corrected intensity data.

4. Results

4.1. Polynomial parameters estimation for TLS intensity correction

The third- and seventh-degree polynomials were used to fit the re-
lationships of the incidence angle-intensity and distance-intensity by
testing different orders of polynomials and comparing the fitting ac-
curacy, respectively. Table 1 presents the mean values and the standard
deviations ( ) of the polynomial parameters of f ( )2 and f d( )3 . The
detailed methods and procedures for polynomial parameter estimation
for Riegl VZ-4000 can be found in Tan et al. (2019).

4.2. Relationship between corrected intensity data and water contents

In this study, the reference incidence angle ( s) and distance (ds)
were defined as 30° and 10m, respectively. A total of 61 datasets of the
new sample were obtained at indoor environments. The water contents
of the new sample varied from 40% (nearly saturated) to 1% (nearly
dry). The blue points in Fig. 3 shows the relationship between the water
contents and the corrected intensity data of the new sample measured
at indoor environments. Water contents significantly decreased from
40% to 8% with the increase in the corrected intensity data from 30 to
45. Water contents slightly decreased when intensity increased from 45
to 60. By a least squares adjustment of Eq. (8) using the datasets of the
new sample, 1 and 2 were estimated as 1731.10 ( 1 =0.09)
and− 0.127 ( 2 =0.24× 10−2), respectively, and the correlation-
coefficient squared (R2) was 0.98. Additionally, the red points in Fig. 3
present the water contents and corrected intensity data of the 48 field
samples collected on site. The water contents of the field samples varied
from 24% to 48%. Apparently, the red points fitted well with the ex-
ponential line estimated by the new sample scanned at indoor control
experiments. This result indicates that good consistency existed be-
tween the indoor and outdoor measurements. The result also suggests
that the exponential model can be used to accurately fit the relationship
between the corrected intensity and the water contents of the mudflat.

4.3. Estimation of mudflat water contents using corrected intensity data

Given the occlusion by several vegetation and artificial facilities, the
northwest corner of the mudflat cannot be scanned by Riegl VZ-4000

Table 1
Polynomial parameters and standard deviations.

N2 0/ 0 1/ 1 2/ 2 3/ 3

3 1.00/0.14 −3.38× 10−3/0.73 2.4×10−5/1.2 −9.73× 10−7/0.50

N3 0/ 0 1/ 1 2/ 2 3/ 3

7 −7.49×10-2/0.84 2.55/0.62 27.6/1.4 140.0/1.4

4/ 4 5/ 5 6/ 6 7/ 7

−377.5/1.9 552.08/0.74 −394.4/1.8 1.00/0.22

Fig. 3. Relationship between the corrected intensity and water content.
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(yellow dotted frame in Fig. 1). A total of 848,439 points were obtained
for the mudflat. The average point density was approximately 30
points/m2. Fig. 4(a) shows the point cloud of the mudflat
(300m×100m) colored by the original intensity data. The original
intensity data of the mudflat varied from 1 to 35. Generally, the in-
tensity values of the northern part were larger than those of the
southern part. On the contrary, no significant differences in the in-
tensity values from the eastern to western directions were observed.
Fig. 4(b) shows the point cloud of the mudflat colored by the elevation
(height). The elevation gradually decreased from the southern to the
northern parts of the mudflat. The southern part was approximately 6m
higher than that of the northern part, and the slope angle at the south to
north directions was approximately 1.4°.

The corrected intensity data of the mudflat were calculated by using
Eq. (4) according to the parameters listed in Table 1. Fig. 5(a) shows the
point cloud of the mudflat colored by the corrected intensity data. The
corrected intensity data of the mudflat varied from 25 to 40. Small
intensity values (blue points) were found at the borders around the
mudflat. Fig. 5(b) shows the water contents of the mudflat that were
estimated by substituting the corrected intensity data into Eq. (7). The
water contents of the mudflat ranged from 12% to 65%, and most of the

water contents were distributed from 25% to 40%. Evidently, the water
contents of the northern part were generally higher than those of the
southern part.

Fig. 5(d) shows that most of the water contents for the mudflat were
between 25% and 40%. Only a small part of the regions had water
contents larger than 40% or smaller than 25%. Thus, the water contents
were divided into three different levels in this study: 12–25% (low),
25–40% (middle), and 40–65% (high), as shown by Fig. 6. Most regions
with low level water contents were located in the southern part; by
contrast, most regions with middle level water content lied at the
northern part. Regions with high level water contents appeared at the
boundaries of the mudflat, the two banks of the ditches, and the edges
of local low-lying areas (e.g., crab caves). For a clear and detailed
presentation, water contents of the mudflat were segmented into 10
different sections. Each section was represented by a different color;
thus, the local changes of water contents could be clearly reflected
(Fig. 6(d)).

The water contents of the 48 field samples measured by gravimetric
method and estimated by Eq. (7) were compared (Fig. 7). The minimum
and maximum root mean square errors (RMSE) were 0.41% and 5.29%,
respectively. The average RMSE for the 48 samples was 2.93%,

Fig. 4. (a) Point cloud of the study mudflat colored by original intensity data, (b) Point cloud of the study mudflat colored by height/elevation, (c) Histogram of the
original intensity data, (d) Histogram of the height/elevation.
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indicating that the corrected intensity data of Riegl VZ-4000 can be
used to estimate the water contents of the mudflat with an error of
approximately 3%. The accuracy obtained in this study was very similar
to that obtained using the theta probes with a RMSE of ±2% (Schmutz
and Namikas, 2011), optical brightness with a RMSE on the order of
3–4% (Darke et al., 2009), and corrected intensity data of middle-range
TLS (Riegl VZ-400) with a RMSE of 2.7% (Smit et al., 2018).

The photos taken on site and the corresponding water contents
derived by Riegl VZ-4000 were compared in Fig. 8. The water contents
and geomorphology of most local low-lying areas can be recorded, in-
dicating the effectiveness and high-accuracy of the proposed method.
All the emitted lasers were absorbed by water, and no signal was de-
tected by the TLS when the stagnant water reached a certain amount.
Hence, Fig. 8 shows that no points could be obtained in some of the
regions with stagnant water. However, reflected signals may still ap-
pear when the amount of stagnant water is not high.

5. Discussion

5.1. Intensity data correction

Theoretically, the intensity data of the Riegl VZ-4000 are also in-
fluenced by atmospheric conditions (e.g., temperature, humidity, and
pressure), instrumental mechanism, and target surface roughness (Fang
et al., 2014; Höfle and Pfeifer, 2007; Xu et al., 2017; Tan et al., 2019).
The TLS instrumental configurations are always kept constant. The at-
mospheric conditions near the surface of the Earth are relatively stable;
hence, the atmospheric attenuation on TLS intensity data can be ig-
nored. Additionally, the mudflat is composed of soft clay and silt; thus,
the difference in surface roughness is subtle. Moreover, the parameters
of f ( )2 estimated by the four homogeneous targets are used to correct
the incidence angle effect on the intensity data of the cement road and
mudflat. Strictly speaking, the incidence angle effect is related to the

Fig. 5. (a) Point cloud of the study mudflat colored by corrected intensity data, (b) Point cloud of the study mudflat colored by water content, (c) Histogram of the
corrected intensity data, (d) Histogram of the water contents.
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surface laser scattering characteristics of the scanned target, and f ( )2
should be individually estimated for different targets (Carrea et al.,
2016; Kaasalainen et al., 2011; Poullain et al., 2016). The surface
scattering characteristics of the cement road and mudflat are different
from those of the four homogeneous targets. However, these differences
are subtle because these targets can all be approximated as Lambert
(Höfle and Pfeifer, 2007; Tan and Cheng, 2015). Therefore, only the
dominant effects (distance and incidence angle) on the intensity data of
long-range TLSs are considered in this study.

The major difference between Figs. 4(a) and 5(a) is that the in-
tensity data of the southern part are larger than that of the northern
part after correction because the original intensity data are simulta-
neously affected by the incidence angle and distance. The TLS instru-
ment is positioned near the northern part (Fig. 1). Therefore, the in-
cidence angles and distances of the northern part are smaller than those
of the southern part, leading to large original intensity data of the
northern part. This phenomenon suggests that the original intensity
data are unreliable for water content estimation of the mudflat, and the

incidence angle and distance effects must be corrected. Additionally,
the intensity values of mudflat borders are both small in Figs. 4(a) and
5(a), that is, the intensity values of these regions nearly have no
changes after correction. This result is due to the very high (almost
saturated) water contents of these regions, and the intensity data are
predominately affected by the water contents, that is, the effect of water
content outweighs the effects of incidence angle and distance. Although
the effects of incidence angle and distance have been eliminated after
correction, the water contents of the borders are high and thus the
corrected intensity data are still small.

Theoretically, when the tide begins to fall back the regions with
high-elevation are the first to be exposed to air. Therefore, the high-
elevation regions have more time for water evaporation than the low-
elevation regions. Additionally, the water in the high-elevation regions
would flow to the low-elevation regions given the effects of gravity and
infiltration (He et al., 2011). Therefore, the intensity data of the high-
elevation regions should be smaller than that of the low-elevation re-
gions because of the water absorption of the laser. The original intensity

Fig. 6. Water contents estimated by corrected intensity data. (a) 12−25% (low), (b) 25−40% (middle). (c) 40−65% (high). (d) Water contents segmented into 10
sections.

Fig. 7. (a) Relationship between the measured water contents by gravimetric method and calculated water contents by corrected intensity data for the 48 field
samples. (b) Spatial distribution and water contents estimation errors for the 48 field samples.
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data of the southern part are smaller than that of the northern part even
though the elevations of the southern part are larger than that of the
northern part (Fig. 4). After correction, the intensity data of the
southern part are larger than that of the northern part (Fig. 5); such
result is consistent with the real topography of the mudflat. This sce-
nario suggests that the incidence angle and distance have significant
influences on the intensity data. The corrected intensity data, rather
than the original intensity data, can be used to estimate the water
contents of the mudflat.

5.2. Mudflat scanning and water content estimation

Fig. 4(a) shows that the mudflat with an area of 300m×100m can
be completely scanned by only one scanning campaign using Riegl VZ-
4000. The point cloud density of the regions about 300m from the
scanner at the far end of the mudflat is still approximately 5 points/m2.
Particularly, the geomorphology of the ditches could be recorded in
detail (Fig. 4(a)). A number of scanning campaigns would be needed to
obtain the 3D point cloud of such large mudflat if short- or middle-
range TLSs are adopted. This result suggests that long-range TLSs can
greatly reduce field data collection work and is highly suitable for large-
area mudflats point cloud acquisition. In this study, one scanning
campaign is enough to acquire the point cloud of the study mudflat. For
large mudflats, the plastic reflective targets can be used to match dif-
ferent scanning campaigns.

The water contents of the new sample vary from 1% to 40% (Fig. 3).
The new sample is almost saturated when water content reaches 40%. If
more water is continually added into the new sample, then stagnant
water would appear on the surface of the new sample. Therefore, the
water contents of the new sample larger 40% are not investigated in
this study. However, water contents from 1% to 40% are sufficient to
accurately model the relationship with corrected intensity data, as in-
dicated by the datasets of the field samples in Fig. 3. The water contents
of several field samples are larger than 40% (almost saturated) because
these field samples are collected from the stagnant water regions of the
mudflat (e.g., the boundary between the sea and mudflat).

The 48 field samples are immediately collected when the scanning
campaign of Riegl VZ-4000 is completed. The interval between the
times of scanning and collecting is brief. Thus, the change in water

contents for the 48 samples during this interval is subtle and can be
ignored. The samples are stored in tightly sealed plastic bags. The water
evaporation of the 48 samples at the interval between the times of
collecting and indoor measuring could be ignored as well. Moreover,
the gravimetric method measures the mean water contents of the
samples with a thickness about 3–5 cm; whereas the TLS only measures
the surface water contents. The water contents measured by these two
methods may differ slightly (Edwards et al., 2012), and the difference is
ignored in this study.

Particularly, it is noticeable that the water contents of the eastern
boundary of the mudflat are very high (40−65%) (Fig. 6(c)). These
regions are adjacent to the land rather than the sea and should not have
such high water contents. Moreover, the elevations of these regions are
not low (Fig. 4(b)). The possible reason for this unexpected result is that
these regions are the edges between the mudflat and vegetation (or-
thophoto in Fig. 1). Vegetation could prevent water evaporation, and a
large amount of water is stored at the vegetation root (He et al., 2011).
Therefore, vegetation distribution has a critical impact on the water
contents of the mudflats. Furthermore, water contents estimated by the
corrected intensity data in this study can be potentially applied to in-
vestigate the internal relationship between water contents and other
quantities in mudflats, e.g., habitation of creatures and topography (see
online supplementary data). These applications would be very bene-
ficial for the ecological and environmental studies in mudflats and can
lead to very interesting topics in the future.

6. Conclusions

This study proposes a new noninvasive method to rapidly and ac-
curately estimate the water contents of intertidal mudflats using the
corrected intensity data of near-infrared long-range TLSs. The proposed
method significantly benefits the ecological, environmental, hydro-
logical, and topographical studies for mudflats. Preliminary results and
conclusions are obtained as follows.

(1) Incidence angle and distance significantly affect the intensity
data of long-range TLSs. These two effects must be corrected to improve
the accuracy and reliability of water content estimation in mudflats.

(2) The relationship between water contents and corrected intensity
data can be modelled by an exponential model where the correlation-

Fig. 8. Local low-lying areas with high water contents. Left: RGB images taken on site. Right: Estimated water contents. No points could be obtained in some of the
regions with stagnant water because all the laser signals are absorbed by water (white areas in the right images). (a) Site 1. (b) Site 2. (c) Site 3.
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coefficient squared is 0.98. The corrected intensity data of long-range
TLSs are effective data sources for the accurate estimation of water
contents of large-area intertidal mudflats with a RMSE of approximately
3%.

(3) Regions with high level water contents lie at the edges between
mudflat and sea water, local low-lying areas, shores of ditches, and
edges between the vegetation and mudflat. Water contents are closely
related to the elevation and vegetation distribution of mudflats.

Future studies are recommended to use multitemporal long-range
TLS intensity data to explore the trend of water content changes in
mudflats and to deeply investigate the internal relationship among
water contents and topography, vegetation distribution, and habitation
of creatures. In this study, the corrected intensity data of long-range
TLSs are applied to the water content estimation for a special soil type
(mudflats). However, the proposed can also be applied for the estima-
tion of water contents for other soil types, e.g., sandy beaches, desert,
and inland soil. Additionally, the proposed method can be extended to
water content inversions or water leakage detection for many other
targets with different materials and compositions, e.g., historical
buildings, rocks, underground tunnels, and tree leaves. The application
of the proposed method to these targets can be very interesting and
promising topics in the future.
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